The physical inconsistency of the Schwarzschild and Kerr solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 172-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The metric of a neutral stationary “black hole” does not satisfy the causality conditions formulated by Hilbert. As a consequence, a trial body falling freely, for instance, into a rotating “black hole” develops a speed equal to the speed of light on the ergosphere shell during a finite time in the reference frame of a distant observer, which results in physical inconsistency and indicates the principal drawback of the vacuum solution of Einstein's equation outside a source.
Keywords: Einstein's equations, static solution, causality, proper reference frame, physical speed.
@article{TMF_2010_164_1_a10,
     author = {V. V. Kiselev and A. A. Logunov and M. A. Mestvirishvili},
     title = {The~physical inconsistency of {the~Schwarzschild} and {Kerr} solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--176},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/}
}
TY  - JOUR
AU  - V. V. Kiselev
AU  - A. A. Logunov
AU  - M. A. Mestvirishvili
TI  - The physical inconsistency of the Schwarzschild and Kerr solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 172
EP  - 176
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/
LA  - ru
ID  - TMF_2010_164_1_a10
ER  - 
%0 Journal Article
%A V. V. Kiselev
%A A. A. Logunov
%A M. A. Mestvirishvili
%T The physical inconsistency of the Schwarzschild and Kerr solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 172-176
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/
%G ru
%F TMF_2010_164_1_a10
V. V. Kiselev; A. A. Logunov; M. A. Mestvirishvili. The physical inconsistency of the Schwarzschild and Kerr solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/

[1] L. D. Landau, E. M. Lifshits, Teoriya polya, v. 2, Nauka, M., 1988 | MR | Zbl

[2] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977

[3] D. Hilbert, Math. Ann., 92 (1924), 1–32 ; Д. Гильберт, Избранные труды, т. II, Основания физики, Факториал, М., 1998, 379–398 | DOI | MR | MR

[4] A. L. Zelmanov, V. G. Agakov, Elementy obschei teorii otnositelnosti, Nauka, M., 1989 | MR

[5] P. A. M. Dirac, Proc. Roy. Soc. A, 270 (1962), 354–356 | DOI | MR