The physical inconsistency of the Schwarzschild and Kerr solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 172-176
Cet article a éte moissonné depuis la source Math-Net.Ru
The metric of a neutral stationary “black hole” does not satisfy the causality conditions formulated by Hilbert. As a consequence, a trial body falling freely, for instance, into a rotating “black hole” develops a speed equal to the speed of light on the ergosphere shell during a finite time in the reference frame of a distant observer, which results in physical inconsistency and indicates the principal drawback of the vacuum solution of Einstein's equation outside a source.
Keywords:
Einstein's equations, static solution, causality, proper reference frame, physical speed.
@article{TMF_2010_164_1_a10,
author = {V. V. Kiselev and A. A. Logunov and M. A. Mestvirishvili},
title = {The~physical inconsistency of {the~Schwarzschild} and {Kerr} solutions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {172--176},
year = {2010},
volume = {164},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/}
}
TY - JOUR AU - V. V. Kiselev AU - A. A. Logunov AU - M. A. Mestvirishvili TI - The physical inconsistency of the Schwarzschild and Kerr solutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 172 EP - 176 VL - 164 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/ LA - ru ID - TMF_2010_164_1_a10 ER -
%0 Journal Article %A V. V. Kiselev %A A. A. Logunov %A M. A. Mestvirishvili %T The physical inconsistency of the Schwarzschild and Kerr solutions %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 172-176 %V 164 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/ %G ru %F TMF_2010_164_1_a10
V. V. Kiselev; A. A. Logunov; M. A. Mestvirishvili. The physical inconsistency of the Schwarzschild and Kerr solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a10/
[1] L. D. Landau, E. M. Lifshits, Teoriya polya, v. 2, Nauka, M., 1988 | MR | Zbl
[2] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977
[3] D. Hilbert, Math. Ann., 92 (1924), 1–32 ; Д. Гильберт, Избранные труды, т. II, Основания физики, Факториал, М., 1998, 379–398 | DOI | MR | MR
[4] A. L. Zelmanov, V. G. Agakov, Elementy obschei teorii otnositelnosti, Nauka, M., 1989 | MR
[5] P. A. M. Dirac, Proc. Roy. Soc. A, 270 (1962), 354–356 | DOI | MR