Quantum $s\ell(2)$ action on a divided-power quantum plane at even
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 28-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a nonstandard version of the quantum plane in which the basis is given by divided powers at an even root of unity $\mathfrak q=e^{i\pi/p}$. It can be regarded as an extension of the "nearly commutative" algebra $\mathbb C[X,Y]$ with $XY=(-1)^pYX$ by nilpotents. For this quantum plane, we construct a Wess–Zumino-type de Rham complex and find its decomposition into representations of the $2p^3$-dimensional quantum group $\overline{\mathcal U}_{\mathfrak q}s\ell(2)$ and its Lusztig extension $\boldsymbol{\mathcal U}_{\mathfrak q}s\ell(2)$; we also define the quantum group action on the algebra of quantum differential operators on the quantum plane.
Keywords: quantum plane, divided power
Mots-clés : Lusztig quantum group, indecomposable representation.
@article{TMF_2010_164_1_a1,
     author = {A. M. Semikhatov},
     title = {Quantum $s\ell(2)$ action on a~divided-power quantum plane at even},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {28--45},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a1/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - Quantum $s\ell(2)$ action on a divided-power quantum plane at even
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 28
EP  - 45
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a1/
LA  - ru
ID  - TMF_2010_164_1_a1
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T Quantum $s\ell(2)$ action on a divided-power quantum plane at even
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 28-45
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a1/
%G ru
%F TMF_2010_164_1_a1
A. M. Semikhatov. Quantum $s\ell(2)$ action on a divided-power quantum plane at even. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a1/

[1] Yu. I. Manin, Quantum Groups and Non-Commutative Geometry, Université de Montréal, CRM, Montréal, 1988, Preprint CRM-1561, Montreal Univ. | MR | Zbl

[2] J. Wess, B. Zumino, Nucl. Phys. B Proc. Suppl., 18:2 (1990), 302–312 | DOI | MR | Zbl

[3] Yu. I. Manin, TMF, 92:3 (1992), 425–450 | DOI | MR | Zbl

[4] L. A. Lambe, D. E. Radford, J. Algebra, 154:1 (1993), 228–288 | DOI | MR | Zbl

[5] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 265:1 (2006), 47–93 ; arXiv: hep-th/0504093 | DOI | MR | Zbl

[6] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398–427 ; arXiv: math.QA/0512621 | DOI | MR | Zbl

[7] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757:3 (2006), 303–343 ; arXiv: hep-th/0606196 | DOI | MR | Zbl

[8] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48:3 (2007), 032303 ; arXiv: math.QA/0606506 | DOI | MR | Zbl

[9] D. Adamović, A. Milas, Selecta Math. New Ser., 15:4 (2009), 535–561 ; arXiv: 0902.3417 | DOI | MR | Zbl

[10] K. Nagatomo, A. Tsuchiya, The triplet vertex operator algebra $W(p)$ and the restricted quantum group at root of unity, arXiv: 0902.4607 | MR

[11] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; 949–1011 ; 7:2 (1994), 335–381 ; 383–453 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[12] A. M. Semikhatov, TMF, 154:3 (2008), 510–535 ; arXiv: 0705.4267 | DOI | MR | Zbl

[13] A. M. Gainutdinov, TMF, 159:2 (2009), 194–206 | DOI | MR | Zbl

[14] A. M. Semikhatov, TMF, 159:1 (2009), 5–33 ; arXiv: 0809.0144 | DOI | MR | Zbl

[15] P. V. Bushlanov, B. L. Feigin, A. M. Gainutdinov, I. Yu. Tipunin, Nucl. Phys. B, 818:3 (2009), 179–195 ; arXiv: 0901.1602 | DOI | MR | Zbl

[16] A. M. Semikhatov, A Heisenberg double addition to the logarithmic Kazhdan–Lusztig duality, arXiv: 0905.2215 | MR

[17] A. Yu. Alekseev, D. V. Gluschenkov, A. V. Lyakhovskaya, Algebra i analiz, 6:5 (1994), 88–125 | MR | Zbl

[18] R. Suter, Comm. Math. Phys., 163:2 (1994), 359–393 | DOI | MR | Zbl

[19] J. Xiao, Canad. J. Math., 49:4 (1997), 772–787 | DOI | MR | Zbl

[20] P. Furlan, L. Hadjiivanov, I. Todorov, Lett. Math. Phys., 82:2–3 (2007), 117–151 ; arXiv: 0710.1063 | DOI | MR | Zbl

[21] Y. Arike, Symmetric linear functions of the restricted quantum group $\overline{U}_qsl_2(\mathbb C)$, arXiv: 0706.1113 | MR

[22] K. Erdmann, E. L. Green, N. Snashall, R. Taillefer, J. Pure Appl. Algebra, 204:2 (2006), 413–454 ; arXiv: math.RT/0410017 | DOI | MR | Zbl

[23] H. Kondo, Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to $\mathfrak{sl}_2$, arXiv: 0901.4221 | MR

[24] A. P. Isaev, EChAYa, 28:3, 685–752 | DOI | MR

[25] R. Coquereaux, Lett. Math. Phys., 42:4 (1997), 309–328 ; arXiv: hep-th/9610114 | DOI | MR | Zbl

[26] L. Da̧browski, F. Nesti, P. Siniscalco, Internat. J. Modern Phys. A, 13:24 (1998), 4147–4162 ; arXiv: hep-th/9705204 | DOI | MR | Zbl

[27] R. Coquereaux, A. O. García, R. Trinchero, Rev. Math. Phys., 12:2 (2000), 227–285 ; arXiv: math-ph/9807012 | DOI | MR | Zbl

[28] H. G. Kausch, Phys. Lett. B, 259:4 (1991), 448–455 | DOI | MR

[29] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 477:1 (1996), 293–318 ; arXiv: hep-th/9604026 | DOI | MR

[30] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386:1–4 (1996), 131–137 ; arXiv: hep-th/9606050 | DOI | MR

[31] M. R. Gaberdiel, Internat. J. Modern Phys. A, 18:25 (2003), 4593–4638 ; arXiv: hep-th/0111260 | DOI | MR | Zbl

[32] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 247:3 (2004), 713–742 ; arXiv: hep-th/0306274 | DOI | MR | Zbl

[33] N. Carqueville, M. Flohr, J. Phys. A, 39:4 (2006), 951–966 ; arXiv: math-ph/0508015 | DOI | MR | Zbl

[34] H. Eberle, M. Flohr, J. Phys. A, 39:49 (2006), 15245–15286 ; arXiv: hep-th/0604097 | DOI | MR | Zbl

[35] D. Adamović, A. Milas, Adv. Math., 217:6 (2008), 2664–2699 ; arXiv: 0707.1857 | DOI | MR | Zbl

[36] G. Lusztig, Geom. Dedicata, 35:1–3 (1990), 89–113 | DOI | MR | Zbl

[37] G. Lusztig, Introduction to Quantum Groups, Progress Math., 110, Birkhäuser, Boston, 1993 | MR | Zbl

[38] N. Hu, J. Algebra, 232:2 (2000), 507–540 | DOI | MR | Zbl