Combinatorial expansions of conformal blocks
Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 3-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A representation of Nekrasov partition functions in terms of a nontrivial two-dimensional conformal field theory was recently suggested. For a nonzero value of the deformation parameter $\epsilon=\epsilon_1+\epsilon_2$, the instanton partition function is identified with a conformal block of the Liouville theory with the central charge $c=1+6\epsilon^2/\epsilon_1\epsilon_2$. The converse of this observation means that the universal part of conformal blocks, which is the same for all two-dimensional conformal theories with nondegenerate Virasoro representations, has a nontrivial decomposition into a sum over Young diagrams that differs from the natural decomposition studied in conformal field theory. We provide some details about this new nontrivial correspondence in the simplest case of the four-point correlation functions.
Keywords: conformal theory, Seiberg–Witten theory, Nekrasov partition function.
@article{TMF_2010_164_1_a0,
     author = {A. V. Marshakov and A. D. Mironov and A. Yu. Morozov},
     title = {Combinatorial expansions of conformal blocks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--27},
     year = {2010},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a0/}
}
TY  - JOUR
AU  - A. V. Marshakov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - Combinatorial expansions of conformal blocks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 3
EP  - 27
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a0/
LA  - ru
ID  - TMF_2010_164_1_a0
ER  - 
%0 Journal Article
%A A. V. Marshakov
%A A. D. Mironov
%A A. Yu. Morozov
%T Combinatorial expansions of conformal blocks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 3-27
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a0/
%G ru
%F TMF_2010_164_1_a0
A. V. Marshakov; A. D. Mironov; A. Yu. Morozov. Combinatorial expansions of conformal blocks. Teoretičeskaâ i matematičeskaâ fizika, Tome 164 (2010) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/TMF_2010_164_1_a0/

[1] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52 | DOI | MR | Zbl

[2] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–474 | DOI | MR | Zbl

[3] R. Donagi, E. Witten, Nucl. Phys. B, 460:2 (1996), 299–334 | DOI | MR | Zbl

[4] N. A. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2004), 831–864 | DOI | MR | Zbl

[5] R. Flume, R. Poghossian, Internat. J. Modern Phys. A, 18:14 (2003), 2541–2563 | DOI | MR | Zbl

[6] A. S. Losev, A. V. Marshakov, N. A. Nekrasov, “Small instantons, little strings and free fermions”, From Fields to Strings: Circumnavigating Theoretical Physics, V. 1, eds. M. Shifman, A. Vainshtein, J. Wheater, World Sci., Singapore, 2005, 581–621 ; arXiv: hep-th/0302191 | DOI | MR | Zbl

[7] N. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, MA, 2006, 525–596 ; arXiv: hep-th/0306238 | DOI | MR | Zbl

[8] H. Nakajima, K. Yoshioka, “Lectures on instanton counting”, Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, 38, eds. J. Hurtubise, E. Markman, AMS, Providence, RI, 2004, 31–101 ; ; Invent. Math., 162:2 (2005), 313–355 ; arXiv: math/0311058arXiv: math/0306198 | DOI | MR | Zbl | DOI | MR | Zbl

[9] S. Shadchin, SIGMA, 2 (2006), 008 ; arXiv: hep-th/0601167 | MR | Zbl

[10] D. Bellisai, F. Fucito, A. Tanzini, G. Travaglini, Phys. Lett. B, 480:3–4 (2000), 365–372 ; ; U. Bruzzo, F. Fucito, A. Tanzini, G.Travaglini, Nucl. Phys. B, 611:1–3 (2001), 205–226 ; ; U. Bruzzo, F. Fucito, J. Morales, A. Tanzini, JHEP, 05 (2003), 054 ; ; U. Bruzzo, F. Fucito, Nucl. Phys. B, 678:3 (2004), 638–655 ; arXiv: hep-th/0002110arXiv: hep-th/0008225arXiv: hep-th/0211108arXiv: math-ph/0310036 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[11] F. Fucito, J. F. Morales, R. Poghossian, JHEP, 10 (2004), 037 ; arXiv: hep-th/0408090 | DOI | MR

[12] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems, RIMS Kokyuroku, 439, ed. H. Totoki, Kyoto Univ., Kyoto, 1981, 30–46 ; M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19:3 (1983), 943–1001 ; Y. Ohta, J. Satsuma, D. Takahashi, T. Tokihiro, Prog. Theor. Phys. Suppl., 94 (1988), 210–241 ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051 ; ; A. Mironov, A. Morozov, G. Semenoff, Internat. J. Modern Phys. A, 11:28 (1996), 5031–5080 ; ; A. Mironov, A. Morozov, S. Natanzon, Integrability and $\mathcal N$-point Hurwitz Numbers (to appear) arXiv: hep-th/9312210arXiv: hep-th/9404005 | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | MR | DOI | MR | Zbl

[13] E. J. Martinec, Phys. Lett. B, 367:1–4 (1996), 91–96 ; ; A. Gorsky, A. Marshakov, Phys. Lett. B, 375:1–4 (1996), 127–134 ; ; H. Itoyama, A. Morozov, Nucl. Phys. B, 477:3 (1996), 855–877 ; ; 491, no. 3, 1997 ; ; A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 380:1–2 (1996), 75–80 ; ; Nucl. Phys. B, 527:3 (1998), 690–716 ; ; A. Gorsky, A. Mironov, “Integrable many-body systems and gauge theories”, Integrable Hierarchies and Modern Physical Theories (Chicago, IL, 2000), NATO Sci. Ser. II Math. Phys. Chem., 18, eds. H. Aratyn, A. S. Sorin, Kluwer, Dordrecht, 2001, 33–176 ; ; A. Marshakov, JHEP, 03 (2008), 055 ; ; А. В. Маршаков, ТМФ, 159:2 (2009), 220–242 ; arXiv: hep-th/9510204arXiv: hep-th/9510224arXiv: hep-th/9511126arXiv: hep-th/9512161arXiv: hep-th/9603140arXiv: hep-th/9802007arXiv: hep-th/0011197arXiv: 0712.2802arXiv: 0810.1536 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | MR | Zbl | DOI | MR | DOI | MR | Zbl

[14] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 ; “Seiberg–Witten curves and integrable systems”, Integrability: The Seiberg–Witten and Whitham Equations, eds. H. Braden, I. Krichever, Gordon and Breach, Amsterdam, 2000, 69–91 | MR | Zbl | MR | Zbl

[15] G. Moore, N. Nekrasov, S. Shatashvili, Comm. Math. Phys., 209:1 (2000), 97–121 ; arXiv: hep-th/9712241 | DOI | MR | Zbl

[16] A. S. Losev, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611 ; arXiv: hep-th/9711108 | DOI | MR | Zbl

[17] A. Marshakov, N. Nekrasov, JHEP, 01 (2007), 104 ; ; А. В. Маршаков, ТМФ, 154:3 (2008), 424–450 ; arXiv: hep-th/0612019arXiv: 0706.2857 | DOI | MR | DOI | MR | Zbl

[18] T. Maeda, T. Nakatsu, K. Takasaki, T. Tamakoshi, JHEP, 03 (2005), 056 ; ; Nucl. Phys. B, 715:1–2 (2005), 275–303 ; ; T. Nakatsu, K. Takasaki, Comm. Math. Phys., 285:2 (2009), 445–468 ; arXiv: hep-th/0412327arXiv: hep-th/0412329arXiv: 0710.5339 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[19] A. Okounkov, R. Pandharipande, “Gromov–Witten theory, Hurwitz numbers, and matrix models”, Algebraic Geometry – Seattle 2005, Seattle, 2005, Part 1, Proc. Sympos. Pure Math., 80, eds. D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, M. Thaddeus, AMS, Providence, RI, 2009, 325–414 ; ; Ann. of Math. (2), 163:2 (2006), 517–560 ; arXiv: math/0101147arXiv: math.AG/0204305 | DOI | MR | Zbl | DOI | MR | Zbl | MR

[20] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The Moduli Spaces of Curves, Progr. Math., 129, eds. D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, M. Thaddeus, Brikhäuser, Boston, MA, 1995, 149–163 ; I. P. Goulden, D. M. Jackson, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 ; ; A. B. Givental, Mosc. Math. J., 1:4 (2001), 551–568 ; ; T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, Invent. Math., 146:2 (2001), 297–327 ; С. К. Ландо, УМН, 57:3(345) (2002), 29–98 ; М. Э. Казарян, С. К. Ландо, Изв. РАН. Сер. матем., 68:5 (2004), 91–122 ; ; J. Amer. Math. Soc., 20:4 (2007), 1079–1089 ; ; M. Kazarian, Adv. Math., 221:1 (2009), 1–21 ; ; V. Bouchard, M. Mariño, “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., 78, eds. R. Y. Donagi, K. Wendland, AMS, Providence, RI, 2008, 263–283 ; ; A. Mironov, A. Morozov, JHEP, 02 (2009), 024 ; arXiv: math/9903094arXiv: math/0108100arXiv: math.AG/0410388arXiv: math/0601760arXiv: 0809.3263arXiv: 0709.1458arXiv: 0807.2843 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[21] H. Awata, M. Fukuma, S. Odake, Y.-H. Quano, Lett. Math. Phys., 31:4 (1994), 289–298 ; ; H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Nucl. Phys. B, 449:1–2 (1995), 347–374 ; arXiv: hep-th/9312208arXiv: hep-th/9503043 | DOI | MR | Zbl | DOI | MR | Zbl

[22] L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91 (2010), 167–197 ; arXiv: 0906.3219 | DOI | MR | Zbl

[23] A. M. Polyakov, Modern Phys. Lett. A, 2:11 (1987), 893–898 ; V. Knizhnik, A. M. Polyakov, A. B. Zamolodchikov, Modern Phys. Lett. A, 3:8 (1988), 819–826 | DOI | MR | DOI | MR

[24] O. I. Bogoyavlensky, Comm. Math. Phys., 51:3 (1976), 201–209 ; M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 ; Invent. Math., 54:3 (1979), 261–269 ; М. А. Ольшанецкий, А. М. Переломов, ТМФ, 45:1 (1980), 3–18 ; B. Kostant, Adv. Math., 34:3 (1979), 195–338 ; A. Gerasimov, S. Kharchev, A. Morozov, M. Olshanetsky, A. Marshakov, A. Mironov, Internat. J. Modern Phys. A, 12:14 (1997), 2523–2583 ; arXiv: hep-th/9601161 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[25] N. Wyllard, JHEP, 11 (2009), 002 ; arXiv: 0907.2189 | DOI | MR

[26] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[27] A. B. Zamolodchikov, Al. B. Zamolodchikov, Konformnaya teoriya polya i kriticheskie yavleniya v dvumernykh sistemakh, MTsNMO, M., 2009 | MR

[28] A. A. Belavin, Chastnoe soobschenie

[29] Vl. Dotsenko, V. A. Fateev, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR

[30] A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, S. Shatashvili, Internat. J. Modern Phys. A, 5:13 (1990), 2495–2589 | DOI | MR

[31] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford Univ. Press, Oxford, 1958 ; М. Хамермеш, Теория групп и ее применение к физическим проблемам, Мир, М., 1966 ; И. Макдональд, Симметрические функции и многочлены Холла, Мир, М., 1984 ; W. Fulton, Young Tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 ; Г. И. Ольшанский, Введение в алгебраическую комбинаторику. Записки лекций, ; А. М. Вершик, С. В. Керов, Функц. анализ и его прил., 19:1 (1985), 25–36 http://www.mccme.ru/ium/s04/algcomb.html | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[32] A. Morozov, Sh. Shakirov, JHEP, 04 (2009), 064 ; ; A. Mironov, A. Morozov, S. Natanzon, Complete set of Cut-and-Join operators in Hurwitz–Kontsevich theory, ; A. Morozov, Unitary integrals and related matrix models, arXiv: 0902.2627arXiv: 0904.4227arXiv: 0906.3518 | DOI | MR | MR

[33] H. Dorn, H.-J. Otto, Phys. Lett. B, 291:1–2 (1992), 39–43 ; ; Nucl. Phys. B, 429:2 (1994), 375–388 ; ; A. B. Zamolodchikov, Al. B. Zamolodchikov, Nucl. Phys. B, 477:2 (1996), 577–605 ; arXiv: hep-th/9206053arXiv: hep-th/9403141arXiv: hep-th/9506136 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl