The $p$-adic sector of the adelic string
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 449-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the construction of Lagrangians that can be considered the Lagrangians of the $p$-adic sector of an adelic open scalar string. Such Lagrangians are closely related to the Lagrangian for a single $p$-adic string and contain the Riemann zeta function with the d'Alembertian in its argument. In particular, we present a new Lagrangian obtained by an additive approach that combines all $p$-adic Lagrangians. This new Lagrangian is attractive because it is an analytic function of the d'Alembertian. Investigating the field theory with the Riemann zeta function is also interesting in itself.
Keywords: $p$-adic string, nonlocal field theory, Riemann zeta function.
@article{TMF_2010_163_3_a8,
     author = {B. G. Dragovich},
     title = {The~$p$-adic sector of the~adelic string},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {449--455},
     year = {2010},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a8/}
}
TY  - JOUR
AU  - B. G. Dragovich
TI  - The $p$-adic sector of the adelic string
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 449
EP  - 455
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a8/
LA  - ru
ID  - TMF_2010_163_3_a8
ER  - 
%0 Journal Article
%A B. G. Dragovich
%T The $p$-adic sector of the adelic string
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 449-455
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a8/
%G ru
%F TMF_2010_163_3_a8
B. G. Dragovich. The $p$-adic sector of the adelic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 449-455. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a8/

[1] I. V. Volovich, TMF, 71:3 (1987), 337–340 | DOI | MR | Zbl

[2] L. Brekke, P. G. O. Freund, Phys. Rep., 233:1 (1993), 1–66 | DOI | MR

[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 1–17 ; arXiv: 0904.4205 | DOI | MR | Zbl

[5] L. Brekke, P. G. O. Freund, M. Olson, E. Witten, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[6] P. H. Frampton, Y. Okada, Phys. Rev. D, 37:10 (1988), 3077–3079 | DOI | MR

[7] D. Ghoshal, A. Sen, Nucl. Phys. B, 584:1–2 (2000), 300–312 ; arXiv: hep-th/0003278 | DOI | MR | Zbl

[8] N. Moeller, B. Zwiebach, JHEP, 10 (2002), 034 ; arXiv: hep-th/0207107 | DOI | MR

[9] V. S. Vladimirov, $p$-Adic Numbers, Ultrametric Anal. Appl., 1:1 (2009), 79–87 | DOI | MR | Zbl

[10] I. Ya. Aref'eva, “Nonlocal string tachyon as a model for cosmological dark energy”, $p$-Adic Mathematical Physics, AIP Conf. Proc., 826, eds. A. Yu. Khrennikov, Z. Rakić, I. V. Volovich, AIP, New York, 2006, 301–311 ; arXiv: astro-ph/0410443 | DOI | MR | Zbl

[11] N. Barnaby, T. Biswas, J. M. Cline, JHEP, 04 (2007), 056 ; arXiv: hep-th/0612230 | DOI | MR

[12] B. G. Dragovich, TMF, 101:3 (1994), 349–359 ; arXiv: hep-th/0402193 | DOI | MR | Zbl

[13] G. S. Djordjević, B. Dragovich, L. Nešić, Infin. Dimens. Anal. Quantum Probab Relat. Top., 6:2 (2003), 179–195 ; arXiv: hep-th/0105030 | DOI | MR | Zbl

[14] G. S. Djordjević, B. Dragovich, L. D. Nešić, I. V. Volovich, Internat. J. Modern Phys. A, 17:10 (2002), 1413–1433 ; arXiv: gr-qc/0105050 | DOI | MR | Zbl

[15] B. Dragović, Phys. Lett. B, 256:3–4 (1991), 392–396 | DOI | MR

[16] B. Dragovich, A. Khrennikov, D. Mihajlovic, Rep. Math. Phys., 60:1 (2007), 55–68 ; arXiv: math-ph/0612058 | DOI | MR | Zbl

[17] B. Dragovich, Zeta strings, arXiv: hep-th/0703008

[18] B. G. Dragovich, TMF, 157:3 (2008), 364–372 | DOI | MR | Zbl

[19] B. Dragovich, “Some Lagrangians with zeta function nonlocality”, Problems of Modern Theoretical Physics, a volume in honour of Prof. I. L. Buchbinder on the occasion of his 60th birthday (Tomsk, Russia 2008), Tomsk State Pedagogical Univ., Tomsk, 146–153

[20] B. Dragovich, Romanian J. Phys., 53:9–10 (2008), 1105–1110 ; arXiv: 0809.1601 | MR | Zbl

[21] B. Dragovich, Fortschr. Phys., 57:5–7 (2009), 546–551 ; arXiv: 0902.0295 | DOI | MR | Zbl

[22] A. S. Koshelev, S. Yu. Vernov, Cosmological perturbations in SFT inspired non-local scalar field models, arXiv: 0903.5176

[23] I. Ya. Aref'eva, I. V. Volovich, Int. J. Geom. Meth. Mod. Phys., 4:5 (2007), 881–895 ; arXiv: hep-th/0701284v2 | DOI | MR | Zbl