Keywords: cosmology, affine connection, dark energy
@article{TMF_2010_163_3_a7,
author = {A. T. Filippov},
title = {Weyl{\textendash}Eddington{\textendash}Einstein affine gravity in the~context of modern cosmology},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {430--448},
year = {2010},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/}
}
A. T. Filippov. Weyl–Eddington–Einstein affine gravity in the context of modern cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 430-448. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/
[1] H. Weyl, Raum-Zeit-Materie, Springer, Berlin–New York, 1923 | MR | Zbl
[2] A. S. Eddington, Proc. R. Soc. Lond. Ser. A, 99:697 (1921), 104–122 | DOI | Zbl
[3] A. S. Eddington, Teoriya otnositelnosti, GTTI, L.–M., 1934 | MR | Zbl
[4] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math., 1923, 32–38 ; 76–77 ; 137–140 ; А. Эйнштейн, “К общей теории относительности”, Собрание научных трудов, Т. II, М., Наука, 1966, 134–141; “Замечание к моей работе «К общей теории относительности»”, 142–144; “К аффинной теории поля”, 145–148 | DOI | Zbl | DOI | Zbl | DOI
[5] A. Einstein, Nature, 112:2812 (1923), 448–449 ; А. Эйнштейн, “Теория аффинного поля”, Собрание научных трудов, Т. II, М., Наука, 1966, 149–153; ; “Теория Эддингтона и принцип Гамильтона”, 161–166 | DOI | Zbl
[6] E. Schrödinger, Space-time Structure, Cambridge Univ. Press, Cambridge, 1950 | MR | Zbl
[7] W. Pauli Jun., “Relativitätstheorie”, Enzykl. d. Math. Wiss., Bd. 5, Teubner, Leipzig, 1921, 539–775 ; В. Паули, Общие принципы волновой механики, ГИТТЛ, М., 1947; W. Pauli, Theory of Relativity, Pergamon Press, New York, 1958 | Zbl | MR | Zbl
[8] A. T. Filippov, On Einstein–Weyl unified model of dark energy and dark matter, arXiv: 0812.2616
[9] M. Born, Proc. R. Soc. Lond. Ser. A, 143:849 (1934), 410–437 ; M. Born, L. Infeld, Proc. R. Soc. Lond. Ser. A, 144:852 (1934), 425–451 ; 147:862 (1934), 522–546 ; 150:869 (1935), 141–166 | DOI | Zbl | DOI | Zbl | DOI | Zbl | DOI | Zbl
[10] S. Deser, G. W. Gibbons, Class. Quant. Grav., 15:5 (1998), L35–L39 ; arXiv: hep-th/9803049 | DOI | MR | Zbl
[11] M. Bañados, Phys. Rev. D, 77:12 (2008), 123534 ; arXiv: 0801.4103 | DOI
[12] D. Langlois, S. Renaux-Petel, D. A. Steer, J. Cosmol. Astropart. Phys., 04 (2009), 021 ; arXiv: 0902.2941 | DOI
[13] G. Mie, Ann. der Phys., 37:3 (1912), 511–534 ; 39:11 (1912), 1–40 ; 40:1 (1913), 1–66 | DOI | Zbl | DOI | DOI | Zbl
[14] A. Proca, J. Phys. Radium (7), 7 (1936), 347–353 | DOI | Zbl
[15] V. Sahni, A. Starobinsky, Internat. J. Modern Phys. D, 15:12 (2006), 2105–2132 ; arXiv: astro-ph/0610026 | DOI | MR | Zbl
[16] A. D. Linde, “Particle physics and inflationary cosmology”, Proceedings of the Fourth Seminar on Quantum Gravity (Moscow, 1987), eds. M. A. Markov, V. A. Berezin, V. P. Frolov, World Sci., Teaneck, NJ, 1988, 736–746 ; Particle Physics and Inflationary Cosmology, Harwood, Chur, Switzerland, 1990; arXiv: hep-th/0503203 | MR
[17] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York, 2005 | MR | Zbl
[18] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl
[19] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi, T. 1, 2, URSS, M., 2008–2009
[20] J. Luo, L.-C. Tu, Z.-K. Hu, E.-J. Luan, Phys. Rev. Lett., 90:8 (2003), 081801 | DOI
[21] B. Carr (ed.), Universe or Multiverse?, Cambridge Univ. Press, Cambridge, 2007 | Zbl
[22] L. H. Ford, Phys. Rev. D, 40:4 (1989), 967–972 | DOI
[23] M. C. Bento, O. Bertolami, P. V. Moniz, J. M. Mourão, P. M. Sá, Class. Quant. Grav., 10:2 (1993), 285–298 ; arXiv: gr-qc/9302034 | DOI | MR | Zbl
[24] C. Armendáriz-Picón, J. Cosmol. Astropart. Phys., 07 (2004), 007 | DOI
[25] A. Golovnev, V. Mukhanov, V. Vanchurin, J. Cosmol. Astropart. Phys., 06 (2008), 009 ; arXiv: 0802.2068 | DOI
[26] T. S. Koivisto, D. F. Mota, J. Cosmol. Astropart. Phys., 08 (2008), 021 | DOI | MR
[27] A. Golovnev, V. Vanchurin, Phys. Rev. D, 79:10 (2009), 103524 ; arXiv: 0903.2977 | DOI
[28] C. Germani, A. Kehagias, J. Cosmol. Astropart. Phys., 03 (2009), 028 ; arXiv: 0902.3667 | DOI
[29] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:5 (1995), 661–672 ; 5:3 (1996), 227–250 ; 6:1 (1997), 39–47 | DOI | MR | DOI | MR | DOI | MR | Zbl
[30] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:1 (1997), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[31] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430 | DOI | MR | Zbl
[32] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes and cosmologies from high dimensional theories, arXiv: hep-th/0504101 | MR
[33] G. A. Alekseev, TMF, 143:2 (2005), 278–304 | DOI | MR | Zbl
[34] A. T. Filippov, TMF, 146:1 (2006), 115–131 ; arXiv: hep-th/0505060 | DOI | MR | Zbl
[35] V. de Alfaro, A. T. Filippov, TMF, 153:3 (2006), 422–452 ; arXiv: hep-th/0612258 | DOI | MR | Zbl
[36] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276
[37] V. de Alfaro, A. T. Filippov, TMF, 162:1 (2010), 41–68 ; arXiv: 0902.4445 | DOI | Zbl
[38] L. P. Eisenhart, Nonriemanniam Geometry, AMS, New York, 1927 | MR
[39] T. Damour, S. Deser, J. McCarthy, Nonsymmetric gravity has unacceptal global asymptotics, arXiv: gr-qc/9312030 | MR
[40] T. Janssen, T. Prokopec, J. Phys. A, 40 (2007), 7067–7074 ; arXiv: gr-qc/0611005 | DOI
[41] V. P. Nair, S. Randjbar-Daemi, V. A. Rubakov, Massive spin-2 fields of geometric origin in curved spacetimes, arXiv: 0811.3781 | MR