Weyl–Eddington–Einstein affine gravity in the context of modern cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 430-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose new models of the “affine” theory of gravity in multidimensional space–times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein's proposed method for obtaining the geometry using the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein theory with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) meson, and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the Lagrangian determines further details of the theory, for example, the nature of the fields that can describe massive particles, tachyons, or even “phantoms”. In “natural" geometric theories, dark energy must also arise. The basic parameters of the theory (cosmological constant, mass, possible dimensionless constants) are theoretically indeterminate, but in the framework of modern "multiverse” ideas, this is more a virtue than a defect. We consider further extensions of the affine models and in more detail discuss approximate effective (“physical”) Lagrangians that can be applied to the cosmology of the early Universe.
Mots-clés : gravitation, inflation.
Keywords: cosmology, affine connection, dark energy
@article{TMF_2010_163_3_a7,
     author = {A. T. Filippov},
     title = {Weyl{\textendash}Eddington{\textendash}Einstein affine gravity in the~context of modern cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--448},
     year = {2010},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/}
}
TY  - JOUR
AU  - A. T. Filippov
TI  - Weyl–Eddington–Einstein affine gravity in the context of modern cosmology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 430
EP  - 448
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/
LA  - ru
ID  - TMF_2010_163_3_a7
ER  - 
%0 Journal Article
%A A. T. Filippov
%T Weyl–Eddington–Einstein affine gravity in the context of modern cosmology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 430-448
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/
%G ru
%F TMF_2010_163_3_a7
A. T. Filippov. Weyl–Eddington–Einstein affine gravity in the context of modern cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 430-448. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a7/

[1] H. Weyl, Raum-Zeit-Materie, Springer, Berlin–New York, 1923 | MR | Zbl

[2] A. S. Eddington, Proc. R. Soc. Lond. Ser. A, 99:697 (1921), 104–122 | DOI | Zbl

[3] A. S. Eddington, Teoriya otnositelnosti, GTTI, L.–M., 1934 | MR | Zbl

[4] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math., 1923, 32–38 ; 76–77 ; 137–140 ; А. Эйнштейн, “К общей теории относительности”, Собрание научных трудов, Т. II, М., Наука, 1966, 134–141; “Замечание к моей работе «К общей теории относительности»”, 142–144; “К аффинной теории поля”, 145–148 | DOI | Zbl | DOI | Zbl | DOI

[5] A. Einstein, Nature, 112:2812 (1923), 448–449 ; А. Эйнштейн, “Теория аффинного поля”, Собрание научных трудов, Т. II, М., Наука, 1966, 149–153; ; “Теория Эддингтона и принцип Гамильтона”, 161–166 | DOI | Zbl

[6] E. Schrödinger, Space-time Structure, Cambridge Univ. Press, Cambridge, 1950 | MR | Zbl

[7] W. Pauli Jun., “Relativitätstheorie”, Enzykl. d. Math. Wiss., Bd. 5, Teubner, Leipzig, 1921, 539–775 ; В. Паули, Общие принципы волновой механики, ГИТТЛ, М., 1947; W. Pauli, Theory of Relativity, Pergamon Press, New York, 1958 | Zbl | MR | Zbl

[8] A. T. Filippov, On Einstein–Weyl unified model of dark energy and dark matter, arXiv: 0812.2616

[9] M. Born, Proc. R. Soc. Lond. Ser. A, 143:849 (1934), 410–437 ; M. Born, L. Infeld, Proc. R. Soc. Lond. Ser. A, 144:852 (1934), 425–451 ; 147:862 (1934), 522–546 ; 150:869 (1935), 141–166 | DOI | Zbl | DOI | Zbl | DOI | Zbl | DOI | Zbl

[10] S. Deser, G. W. Gibbons, Class. Quant. Grav., 15:5 (1998), L35–L39 ; arXiv: hep-th/9803049 | DOI | MR | Zbl

[11] M. Bañados, Phys. Rev. D, 77:12 (2008), 123534 ; arXiv: 0801.4103 | DOI

[12] D. Langlois, S. Renaux-Petel, D. A. Steer, J. Cosmol. Astropart. Phys., 04 (2009), 021 ; arXiv: 0902.2941 | DOI

[13] G. Mie, Ann. der Phys., 37:3 (1912), 511–534 ; 39:11 (1912), 1–40 ; 40:1 (1913), 1–66 | DOI | Zbl | DOI | DOI | Zbl

[14] A. Proca, J. Phys. Radium (7), 7 (1936), 347–353 | DOI | Zbl

[15] V. Sahni, A. Starobinsky, Internat. J. Modern Phys. D, 15:12 (2006), 2105–2132 ; arXiv: astro-ph/0610026 | DOI | MR | Zbl

[16] A. D. Linde, “Particle physics and inflationary cosmology”, Proceedings of the Fourth Seminar on Quantum Gravity (Moscow, 1987), eds. M. A. Markov, V. A. Berezin, V. P. Frolov, World Sci., Teaneck, NJ, 1988, 736–746 ; Particle Physics and Inflationary Cosmology, Harwood, Chur, Switzerland, 1990; arXiv: hep-th/0503203 | MR

[17] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York, 2005 | MR | Zbl

[18] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[19] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi, T. 1, 2, URSS, M., 2008–2009

[20] J. Luo, L.-C. Tu, Z.-K. Hu, E.-J. Luan, Phys. Rev. Lett., 90:8 (2003), 081801 | DOI

[21] B. Carr (ed.), Universe or Multiverse?, Cambridge Univ. Press, Cambridge, 2007 | Zbl

[22] L. H. Ford, Phys. Rev. D, 40:4 (1989), 967–972 | DOI

[23] M. C. Bento, O. Bertolami, P. V. Moniz, J. M. Mourão, P. M. Sá, Class. Quant. Grav., 10:2 (1993), 285–298 ; arXiv: gr-qc/9302034 | DOI | MR | Zbl

[24] C. Armendáriz-Picón, J. Cosmol. Astropart. Phys., 07 (2004), 007 | DOI

[25] A. Golovnev, V. Mukhanov, V. Vanchurin, J. Cosmol. Astropart. Phys., 06 (2008), 009 ; arXiv: 0802.2068 | DOI

[26] T. S. Koivisto, D. F. Mota, J. Cosmol. Astropart. Phys., 08 (2008), 021 | DOI | MR

[27] A. Golovnev, V. Vanchurin, Phys. Rev. D, 79:10 (2009), 103524 ; arXiv: 0903.2977 | DOI

[28] C. Germani, A. Kehagias, J. Cosmol. Astropart. Phys., 03 (2009), 028 ; arXiv: 0902.3667 | DOI

[29] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:5 (1995), 661–672 ; 5:3 (1996), 227–250 ; 6:1 (1997), 39–47 | DOI | MR | DOI | MR | DOI | MR | Zbl

[30] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:1 (1997), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl

[31] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430 | DOI | MR | Zbl

[32] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes and cosmologies from high dimensional theories, arXiv: hep-th/0504101 | MR

[33] G. A. Alekseev, TMF, 143:2 (2005), 278–304 | DOI | MR | Zbl

[34] A. T. Filippov, TMF, 146:1 (2006), 115–131 ; arXiv: hep-th/0505060 | DOI | MR | Zbl

[35] V. de Alfaro, A. T. Filippov, TMF, 153:3 (2006), 422–452 ; arXiv: hep-th/0612258 | DOI | MR | Zbl

[36] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276

[37] V. de Alfaro, A. T. Filippov, TMF, 162:1 (2010), 41–68 ; arXiv: 0902.4445 | DOI | Zbl

[38] L. P. Eisenhart, Nonriemanniam Geometry, AMS, New York, 1927 | MR

[39] T. Damour, S. Deser, J. McCarthy, Nonsymmetric gravity has unacceptal global asymptotics, arXiv: gr-qc/9312030 | MR

[40] T. Janssen, T. Prokopec, J. Phys. A, 40 (2007), 7067–7074 ; arXiv: gr-qc/0611005 | DOI

[41] V. P. Nair, S. Randjbar-Daemi, V. A. Rubakov, Massive spin-2 fields of geometric origin in curved spacetimes, arXiv: 0811.3781 | MR