Mots-clés : torsion.
@article{TMF_2010_163_3_a14,
author = {S. I. Bel'kov and I. G. Korepanov},
title = {A~matrix solution of the~pentagon equation with anticommuting variables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {513--528},
year = {2010},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a14/}
}
TY - JOUR AU - S. I. Bel'kov AU - I. G. Korepanov TI - A matrix solution of the pentagon equation with anticommuting variables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 513 EP - 528 VL - 163 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a14/ LA - ru ID - TMF_2010_163_3_a14 ER -
S. I. Bel'kov; I. G. Korepanov. A matrix solution of the pentagon equation with anticommuting variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 513-528. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a14/
[1] U. Pachner, European. J. Combin., 12:2 (1991), 129–145 | DOI | MR | Zbl
[2] W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest, Geom. Topol. Monogr., 2, eds. J. Hass, M. Scharlemann, Geom. Topol. Publ., Coventry, 1999, 299–320 | DOI | MR | Zbl
[3] E. Moise, Ann. Math. (2), 56:1 (1952), 96–114 | DOI | MR | Zbl
[4] S. I. Bel'kov, I. G. Korepanov, E. V. Martyushev, A simple topological quantum field theory for manifolds with triangulated boundary, arXiv: 0907.3787
[5] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl
[6] I. G. Korepanov, TMF, 158:1 (2009), 98–114 | DOI | MR | Zbl
[7] I. G. Korepanov, TMF, 158:3 (2009), 405–418 | DOI | MR | Zbl
[8] E. V. Martyushev, Chastnoe soobschenie, 2008
[9] E. V. Martyushev, Izv. Chelyabinsk. nauchn. tsentra, 2003, no. 2(19), 1–5 | MR
[10] E. V. Martyushev, Izv. Chelyabinsk. nauchn. tsentra, 2004, no. 4(26), 1–5 | MR
[11] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd. MGU, M., 1983 | MR
[12] V. G. Turaev, Vvedenie v kombinatornye krucheniya, MTsNMO, M., 2004 | MR | Zbl