Hecke surfaces and duality transformations in lattice spin systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 505-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss two related subjects: (1) Hecke surfaces and $K$-regular graphs and (2) duality transformations for generalized Potts models. Each is related to deep mathematical and physical theories; at a first glance, they have nothing in common. But it has recently become more evident that there are deep internal relations between these two problems. The role of Hecke groups is especially interesting and mysterious in this context. We consider a few examples. The exposition is basically descriptive.
Keywords: Hecke group, Potts model, duality transformation.
@article{TMF_2010_163_3_a13,
     author = {M. I. Monastyrskii},
     title = {Hecke surfaces and duality transformations in lattice spin systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--512},
     year = {2010},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a13/}
}
TY  - JOUR
AU  - M. I. Monastyrskii
TI  - Hecke surfaces and duality transformations in lattice spin systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 505
EP  - 512
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a13/
LA  - ru
ID  - TMF_2010_163_3_a13
ER  - 
%0 Journal Article
%A M. I. Monastyrskii
%T Hecke surfaces and duality transformations in lattice spin systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 505-512
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a13/
%G ru
%F TMF_2010_163_3_a13
M. I. Monastyrskii. Hecke surfaces and duality transformations in lattice spin systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 505-512. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a13/

[1] R. Brooks, M. Monastyrsky, “$K$-regular graphs and Hecke surfaces”, Geometry, Spectral Theory, Groups, and Dynamics, Contemp. Math., 387, eds. M. Entov, Y. Pinchover, M. Sageev, AMS, Providence, RI, 2005, 65–74 | DOI | MR | Zbl

[2] R. Brooks, E. Makover, J. Diff. Geom., 68:1 (2004), 121–157 | DOI | MR | Zbl

[3] G. V. Belyi, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | DOI | MR | Zbl

[4] R. Brooks, E. Makover, “Belyi surfaces”, Entire Functions in Modern Analysis (Tel-Aviv, 1997), Israel Math. Conf. Proc., 15, eds. Y. Lyubich, V. Milman, I. Ostrovskii, M. Sodin, V. Tkachenko, L. Zalcman, Bar-Ilan Univ., Ramat Gan, 2001, 37–46 | MR | Zbl

[5] P. B. Cohen, C. Itsykson, J. Wolfart, Comm. Math. Phys., 163:3 (1994), 605–627 | DOI | MR | Zbl

[6] G. Jones, D. Singermann, Bull. London Math. Soc., 28:6 (1996), 561–590 | DOI | MR | Zbl

[7] R. Brooks, Comment. Math. Helv., 74:1 (1999), 156–170 | DOI | MR | Zbl

[8] D. Mangoubi, J. Anal. Math., 91:1 (2003), 193–209 | DOI | MR | Zbl

[9] V. F. R. Jones, Invent. Math., 72:1 (1983), 1–25 | DOI | MR | Zbl

[10] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[11] P. W. Kasteleyn, C. M. Fortuin, J. Phys. Soc. Japan, 26, Suppl. (1969), 11–14

[12] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR | Zbl

[13] A. B. Zamolodchikov, Exact solutions in two dimensional conformal theory and critical phenomena, Prepint, ITP-87-65, Kiev, 1987 | MR

[14] V. M. Buchstaber, M. I. Monastyrsky, J. Phys. A, 36:28 (2003), 7679–7692 | DOI | MR | Zbl

[15] M. Monastyrsky, Kramers–Wannier Duality for spin systems with non-abelian symmetries, Proc. IV School in Mathematical Physics (Belgrade, 2006)

[16] I. Dolgachev, “McKay's correspondence for cocompact discrete subgroups of $\mathrm{SU}(1,1)$”, Groups and Symmetries, CRM Proc. Lecture Notes, 47, eds. J. Harnard, P. Winternitz, AMS, Providence, RI, 2009, 111–133 | DOI | MR | Zbl

[17] Vl. S. Dotsenko, J. Stat. Phys., 34:5–6 (1984), 781–791 | DOI | MR