@article{TMF_2010_163_3_a12,
author = {Sh. R. Shakirov},
title = {Nonperturbative approach to finite-dimensional {non-Gaussian} integrals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {495--504},
year = {2010},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/}
}
Sh. R. Shakirov. Nonperturbative approach to finite-dimensional non-Gaussian integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 495-504. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/
[1] A. Morozov, Sh. Shakirov, JHEP, 12 (2009), 002 ; arXiv: 0903.2595 | DOI
[2] D. Hilbert, Theory of Algebraic Invariants, Cambridge Math. Library, ed. B. Sturmfels, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[3] N. D. Beklemishev, Vestn. MGU. Cer. matem., mekh., 1982, no. 2, 42–49 | MR | Zbl
[4] H. Derksen, G. Kemper, Computational Invariant Theory. Encyclopedia Math. Sci., Invariant Theory and Algebraic Transformation Groups, 130, Springer, Berlin, 2002 | MR | Zbl
[5] B. Sturmfels, Algorithms in Invariant Theory, Texts Monogr. Symbolic Comput., Springer, Wien, 2008 | MR | Zbl
[6] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Sci., Hackensack, NJ, 2007 ; arXiv: hep-th/0609022 | MR | Zbl
[7] V. Dolotin, QFT's with action of degree 3 and higher and degeneracy of tensors, arXiv: hep-th/9706001