Nonperturbative approach to finite-dimensional non-Gaussian integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 495-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the homogeneous non-Gaussian integral $J_{n|r}(S)=\int e^{-S(x_1,\dots,x_n)}\,d^nx$, where $S(x_1,\dots,x_n)$ is a symmetric form of degree $r$ in $n$ variables. This integral is naturally invariant under $SL(n)$ transformations and therefore depends only on the invariants of the form. For example, in the case of quadratic forms, it is equal to the $(-1/2)$th power of the determinant of the form. For higher-degree forms, the integral can be calculated in some cases using the so-called Ward identities, which are second-order linear differential equations. We describe the method for calculating the integral and present detailed calculations in the case where $n=2$ and $r=5$. It is interesting that the answer is a hypergeometric function of the invariants of the form.
Keywords: non-Gaussian integral, Ward identity, theory of invariants.
@article{TMF_2010_163_3_a12,
     author = {Sh. R. Shakirov},
     title = {Nonperturbative approach to finite-dimensional {non-Gaussian} integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {495--504},
     year = {2010},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/}
}
TY  - JOUR
AU  - Sh. R. Shakirov
TI  - Nonperturbative approach to finite-dimensional non-Gaussian integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 495
EP  - 504
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/
LA  - ru
ID  - TMF_2010_163_3_a12
ER  - 
%0 Journal Article
%A Sh. R. Shakirov
%T Nonperturbative approach to finite-dimensional non-Gaussian integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 495-504
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/
%G ru
%F TMF_2010_163_3_a12
Sh. R. Shakirov. Nonperturbative approach to finite-dimensional non-Gaussian integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 495-504. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a12/

[1] A. Morozov, Sh. Shakirov, JHEP, 12 (2009), 002 ; arXiv: 0903.2595 | DOI

[2] D. Hilbert, Theory of Algebraic Invariants, Cambridge Math. Library, ed. B. Sturmfels, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[3] N. D. Beklemishev, Vestn. MGU. Cer. matem., mekh., 1982, no. 2, 42–49 | MR | Zbl

[4] H. Derksen, G. Kemper, Computational Invariant Theory. Encyclopedia Math. Sci., Invariant Theory and Algebraic Transformation Groups, 130, Springer, Berlin, 2002 | MR | Zbl

[5] B. Sturmfels, Algorithms in Invariant Theory, Texts Monogr. Symbolic Comput., Springer, Wien, 2008 | MR | Zbl

[6] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Sci., Hackensack, NJ, 2007 ; arXiv: hep-th/0609022 | MR | Zbl

[7] V. Dolotin, QFT's with action of degree 3 and higher and degeneracy of tensors, arXiv: hep-th/9706001