Twistor-beam excitations of black holes and prequantum Kerr–Schild geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 467-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact Kerr–Schild (KS) solutions for electromagnetic excitations of black holes are singular beams supported on twistor lines of the KS geometry. These beams have a very strong back-reaction on the metric and horizon and create a fluctuating KS geometry occupying an intermediate position between the classical and quantum gravities. We consider the Kerr theorem, which determines the twistor structure of the KS geometry and the corresponding holographic prequantum space–time adapted to a subsequent quantum treatment.
Keywords: black hole, twistor, Kerr theorem, singular beam, quantum gravity.
@article{TMF_2010_163_3_a10,
     author = {A. Ya. Burinskii},
     title = {Twistor-beam excitations of black holes and prequantum {Kerr{\textendash}Schild} geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--474},
     year = {2010},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a10/}
}
TY  - JOUR
AU  - A. Ya. Burinskii
TI  - Twistor-beam excitations of black holes and prequantum Kerr–Schild geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 467
EP  - 474
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a10/
LA  - ru
ID  - TMF_2010_163_3_a10
ER  - 
%0 Journal Article
%A A. Ya. Burinskii
%T Twistor-beam excitations of black holes and prequantum Kerr–Schild geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 467-474
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a10/
%G ru
%F TMF_2010_163_3_a10
A. Ya. Burinskii. Twistor-beam excitations of black holes and prequantum Kerr–Schild geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 3, pp. 467-474. http://geodesic.mathdoc.fr/item/TMF_2010_163_3_a10/

[1] E. Witten, Comm. Math. Phys., 252:1–3 (2004), 189–258 | DOI | MR | Zbl

[2] G. C. Debney, R. P. Kerr, A. Schild, J. Math. Phys., 10:10 (1969), 1842–1854 | DOI | MR

[3] A. Burinskii, Gen. Relativ. Grav., 41:10 (2009), 2281–2286 ; ; Beam-like excitations of Kerr–Schild geometry and semiclassical mechanism of black-hole evaporation, arXiv: 0903.3162arXiv: 0903.2365 | DOI | MR | Zbl

[4] G. W. Gibbons, Comm. Math. Phys., 45:2 (1975), 191–202 | DOI | MR

[5] C. R. Stephens, G. 't Hooft, B. F. Whiting, Class. Quant. Grav., 11 (1994), 621–647 | DOI | MR

[6] R. Penrose, J. Math. Phys., 8:2 (1967), 345–366 | DOI | MR | Zbl

[7] R. Penrouz, V. Rindler, Spinory i prostranstvo-vremya. T. 2. Spinornye i tvistornye metody v geometrii prostranstva-vremeni, Mir, M., 1988 | MR | MR | Zbl

[8] D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein's Field Equations, Cambridge Monogr. Math. Phys., 6, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | Zbl

[9] A. Burinskii, Gravit. Cosmol., 11:4 (2005), 301–304 ; IJGMMP, 4:3 (2007), 437–456 | MR | Zbl | DOI | MR | Zbl

[10] A. Burinskii, Phys. Rev. D, 70:8 (2004), 086006 | DOI | MR

[11] A. Burinskii, E. Elisalde, S. Hildebrandt, G. Magli, Phys. Rev. D, 65:6 (2002), 064039 | DOI | MR

[12] A. Burinskii, Regular superconducting source of the Kerr–Newman solution, arXiv: 1003.2928

[13] A. Burinskii, Gravit. Cosmol., 14:2 (2008), 109–122 | DOI | MR | Zbl

[14] A. Burinskii, E. Elizalde, S. R. Hildebrandt, G. Magli, Phys. Rev. D, 74:2 (2006), 021502(R) | DOI | MR