Langevin equation of a fluid particle in wall-induced turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 328-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-induced turbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer). The analysis is based on the asymptotic behavior at a large Reynolds number. We use the Lagrangian Kolmogorov theory, recently derived asymptotic expressions for the spatial distribution of turbulent energy dissipation, and also newly derived reciprocity relations analogous to the Onsager relations supplemented with recent measurement results. The long-time limit of the derived Langevin equation yields the diffusion equation for admixture dispersion in wall-induced turbulence.
Mots-clés : turbulence, dispersion, Langevin equation
Keywords: Onsager reciprocity.
@article{TMF_2010_163_2_a7,
     author = {J. J. Brouwers},
     title = {Langevin equation of a~fluid particle in wall-induced turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--352},
     year = {2010},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a7/}
}
TY  - JOUR
AU  - J. J. Brouwers
TI  - Langevin equation of a fluid particle in wall-induced turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 328
EP  - 352
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a7/
LA  - ru
ID  - TMF_2010_163_2_a7
ER  - 
%0 Journal Article
%A J. J. Brouwers
%T Langevin equation of a fluid particle in wall-induced turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 328-352
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a7/
%G ru
%F TMF_2010_163_2_a7
J. J. Brouwers. Langevin equation of a fluid particle in wall-induced turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 328-352. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a7/

[1] A. N. Kolmogorov, DAN SSSR, 30:4 (1941), 299–303 | MR | MR | Zbl

[2] A. S. Monin, A. N. Yaglom, Statisticheskaya gidromekhanika, T. 1, Nauka, M., 1965 | MR | Zbl

[3] G. I. Taylor, Proc. London Math. Soc. 2, 20:1 (1922), 196–211 | DOI | Zbl

[4] N. G. Van Kampen, Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990 | MR | Zbl

[5] A. S. Monin, A. N. Yaglom, Statisticheskaya gidromekhanika, T. 2, Nauka, M., 1967 | MR | Zbl

[6] G. A. Voth, A. La Porta, A. M. Crawford, J. Alexander, E. Bodenschatz, J. Fluid Mech., 469:1 (2002), 121–160 | DOI | Zbl

[7] J. D. Wilson, B. L. Sawford, Boundary-Layer Meteorology, 78:1–2 (1996), 191–210 | DOI

[8] A. H. Kolmogorov, “Précisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds élevés”, Mécanique de la turbulence, Colloq. Intern. CNRS (Marseille, Aug.-Sept. 1961), CNRS, Paris, 1962, 447–458 | MR

[9] M. S. Borgas, Phil. Trans. R. Soc. Lond. A, 342:1665 (1993), 379–411 | DOI | Zbl

[10] M. S. Borgas, B. L. Sawford, Phys. Fluids, 6:2 (1994), 618–633 | DOI | MR | Zbl

[11] U. Frish, Turbulentnost. Nasledie Kolmogorova, Fazis, M., 1998 | MR | Zbl

[12] J. J. H. Brouwers, Phys. Fluids, 19:10 (2007), 101702 | DOI | Zbl

[13] M. S. Borgas, B. L. Sawford, J. Fluid Mech., 279 (1994), 69–99 | DOI | MR | Zbl

[14] S. B. Pope, Turbulent Flows, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[15] F. Toschi, E. Bodenschatz, “Lagrangian properties of particles in turbulence”, Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., 41, Annu. Rev., Palo Alto, CA, 2009, 375–404 | DOI | MR | Zbl

[16] D. J. Thomson, J. Fluid Mech., 180 (1987), 529–556 | DOI | Zbl

[17] J. Laufer, The structure of turbulence in fully developed pipe flow, Report no. 1174, NACA, 1954 http://naca.central.cranfield.ac.uk/reports/1954/naca-report-1174.pdf

[18] P. S. Klebanoff, Characteristics of turbulence in a boundary layer with zero pressure gradient, Report no. 1247, NACA, 1955 http://naca.central.cranfield.ac.uk/reports/1955/naca-report-1247.pdf

[19] J. F. Morrison, B. J. McKeon, W. Jiang, A. J. Smits, J. Fluid Mech., 508 (2004), 99–131 | DOI | Zbl

[20] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. 5. Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR | MR | Zbl

[21] J. J. H. Brouwers, Phys. Fluids, 16:7 (2004), 2300–2308 | DOI | MR

[22] L. E. Reichl, A Modern Course in Statistical Physics, Wiley, New York, 1998 | MR | Zbl

[23] O. Bokhove, M. Oliver, Proc. R. Soc. London A, 462:2073 (2006), 2575–2592 | DOI | MR | Zbl

[24] B. J. McKeon, J. Li, W. Jiang, J. F. Morrison, A. J. Smits, J. Fluid Mech., 501 (2004), 135–147 | DOI | Zbl

[25] R. Zhao, A. J. Smits, J. Fluid Mech., 576 (2007), 457–473 | DOI | Zbl

[26] P. A. Monkewitz, K. A. Chauhan, H. M. Nagib, Phys. Fluids, 19:11 (2007), 115101 | DOI | Zbl

[27] S. Hoyas, J. Jiménez, Phys. Fluids, 18:1 (2006), 011702 | DOI

[28] B. L. Sawford, P. K. Yeung, Phys. Fluids, 12:8 (2000), 2033–2045 | DOI | MR

[29] R. J. E. Walpot, C. W. M. van der Geld, J. G. M. Kuerten, Phys. Fluids, 19:4 (2007), 045102 | DOI | Zbl

[30] B. L. Sawford, P. K. Yeung, Phys. Fluids, 13:9 (2001), 2627–2634 | DOI

[31] R. L. Stratonovich, Topics in the Theory of Random Noise. V. I: General Theory of Random Processes. Nonlinear Transformations of Signals and Noise, Gordon and Breach, New York, 1967 | MR | Zbl

[32] J. J. H. Brouwers, J. Engrg. Math., 44:3 (2002), 277–295 | DOI | MR | Zbl