The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 314-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose modified Faddeev–Merkuriev integral equations for solving the $2\to2,3$ quantum three-body Coulomb scattering problem. We show that the solution of these equations can be obtained using a discrete Hilbert-space basis and that the error in the scattering amplitudes due to truncating the basis can be made arbitrarily small. The Coulomb Green's function is also confined to the two-body sector of the three-body configuration space by this truncation and can be constructed in the leading order using convolution integrals of two-body Green's functions. To evaluate the convolution integral, we propose an integration contour that is applicable for all energies including bound-state energies and scattering energies below and above the three-body breakup threshold.
Keywords: Coulomb scattering problem, quantum scattering problem, Faddeev–Merkuriev integral equations.
@article{TMF_2010_163_2_a6,
     author = {S. L. Yakovlev and Z. Papp},
     title = {The~three-body {Coulomb} scattering problem in a~discrete {Hilbert-space} basis representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {314--327},
     year = {2010},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a6/}
}
TY  - JOUR
AU  - S. L. Yakovlev
AU  - Z. Papp
TI  - The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 314
EP  - 327
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a6/
LA  - ru
ID  - TMF_2010_163_2_a6
ER  - 
%0 Journal Article
%A S. L. Yakovlev
%A Z. Papp
%T The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 314-327
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a6/
%G ru
%F TMF_2010_163_2_a6
S. L. Yakovlev; Z. Papp. The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 314-327. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a6/

[1] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | MR | Zbl

[2] J. V. Noble, Phys. Rev., 161:4 (1967), 945–955 | DOI

[3] Z. Papp, W. Plessas, Phys. Rev. C, 54:1 (1996), 50–56 | DOI

[4] Z. Papp, Phys. Rev. C, 55:3 (1997), 1080–1087 | DOI

[5] Z. Papp, Few-Body Systems, 24:4 (1998), 263–270 | DOI

[6] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN SSSR, 69, ed. I. G. Petrovskii, Izd-vo AN SSSR, M.–L., 1963 | MR | MR | Zbl

[7] S. P. Merkurev, Zap. nauchn. sem. LOMI, 77, 1978, 148–187 | DOI | MR | Zbl

[8] S. P. Merkuriev, Ann. Phys., 130:2 (1980), 395–426 ; Acta Phys. Austriaca, 23 (1981), 65–110 | DOI | MR | Zbl | MR | Zbl

[9] V. Vanzani, Few-Body Nuclear Physics, Lectures presented at the Workshop on Few-Body Problems in Nuclear Physics (Trieste, 13–16 March 1978), eds. G. Pisent, V. Vanzani, L. Fonda, IAEA, Vienna, 1978, 57

[10] W. Glöckle, Nucl. Phys. A, 141:3 (1970), 620–630 | DOI | MR

[11] S. L. Yakovlev, TMF, 107:3 (1996), 531–528 | DOI | MR | Zbl

[12] W. Sandhas, Few-Body Nuclear Physics, Lectures presented at the Workshop on Few-Body Problems in Nuclear Physics (Trieste, 13–16 March 1978), eds. G. Pisent, V. Vanzani, L. Fonda, IAEA, Vienna, 1978, 3

[13] O. M. Deryuzhkova, S. B. Levin, S. L. Yakovlev, J. Phys. B, 39:22 (2006), 4767–4773 ; S. B. Levin, S. L. Yakovlev, Few-Body Systems, 44:1–4 (2008), 249–251 | DOI | DOI

[14] M. Rotenberg, Ann. Phys., 19:2 (1962), 262–278 ; “Theory and Application of Sturmian Functions”, Adv. Atom. Mol. Opt. Phys., 6, 1970, 233–268 | DOI | MR | Zbl

[15] Z. Papp, J. Phys. A, 20:1 (1987), 153–162 ; Phys. Rev. C, 38:5 (1988), 2457–2460 ; Phys. Rev. A, 46:7 (1992), 4437–4439 ; Comput. Phys. Comm., 70:2 (1992), 426–434 ; B. Kónya, G. Lévai, Z. Papp, J. Math. Phys., 38:9 (1997), 4832–4844 | DOI | MR | DOI | DOI | DOI | DOI | MR | Zbl