The renormalizing series of some integral equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 299-313
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider integral equations for which the perturbation expansion gives a power series in a parameter $h$ whose coefficients are divergent integrals. We eliminate the divergent integrals by introducing a renormalizing $Z(t,h)$ series in the minimal subtraction scheme. We investigate the convergence of the formal $Z$ series in relation to the kernels of the integral equations. We find a relation of the renormalizing series to the Lagrange inversion series and also some other relations.
Keywords:
renormalization, divergent integral
Mots-clés : Lagrange inversion formula.
Mots-clés : Lagrange inversion formula.
@article{TMF_2010_163_2_a5,
author = {B. Candelpergher and T. Grandou},
title = {The~renormalizing series of some integral equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {299--313},
year = {2010},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a5/}
}
B. Candelpergher; T. Grandou. The renormalizing series of some integral equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 299-313. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a5/
[1] D. Kreimer, Knots and Feynman Diagrams, Cambridge Lecture Notes Phys., 13, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[2] A. Connes, D. Kreimer, Comm. Math. Phys., 199:1 (1998), 203–242 | DOI | MR | Zbl
[3] J. C. Collins, Renormalization, Cambridge Monogr Math. Phys., Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[4] I. Bierenbaum, R. Kreckel, D. Kreimer, J. Math. Phys., 43:10 (2002), 4721–4740 | DOI | MR | Zbl
[5] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Ch. 1, 2, Nauka, M., 1963 | MR | Zbl