Keywords: boundary condition, quantum group, reflection equation.
@article{TMF_2010_163_2_a4,
author = {P. P. Kulish and N. Manoilovich and Z. Nagy},
title = {Jordanian deformation of the~open {XXX} spin chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {288--298},
year = {2010},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a4/}
}
P. P. Kulish; N. Manoilovich; Z. Nagy. Jordanian deformation of the open XXX spin chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 288-298. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a4/
[1] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[2] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR | Zbl
[3] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symétries Quantiques, eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 ; arXiv: hep-th/9605187 | MR | Zbl
[4] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Phys., 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin–New York, 1982, 61–119 | DOI | MR | Zbl
[5] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. 8, Zap. nauchn. sem. LOMI, 155, ed. L. D. Faddeev, Nauka, L., 1986, 18–49 ; V. G. Drinfel'd, “Quantum groups”, Proc. Intern. Congress Math., Vol. 1, 2 (Berkeley, Calif., 1986), AMS, Providence, RI, 1987, 798–820 | MR | Zbl | MR
[6] M. Jimbo, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl
[7] V. G. Drinfeld, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl
[8] P. P. Kulish, “Twisting of quantum groups and integrable systems”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After NEEDS '79 (Gallipoli, 1999), eds. M. Boiti, L. Martina, F. Pempinelli, B. Prinari, G. Soliani, World Sci., Singapore, 2000, 304–310 | DOI | MR | Zbl
[9] P. P. Kulish, A. A. Stolin, Czech. J. Phys., 47:12 (1997), 1207–1212 | DOI | MR | Zbl
[10] M. Gerstenhaber, A. Giaquinto, S. D. Schack, “Quantum symmetry”, Quantum Groups, Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 9–46 | DOI | MR | Zbl
[11] O. V. Ogievetsky, Rend. Circ. Mat. Palermo (2), Suppl. no 37 (1993), 185–199 ; Preprint MPI-Ph/92-99, Munich, 1992 | MR | Zbl
[12] P. P. Kulish, V. D. Lyakhovsky, A. I. Mudrov, J. Math. Phys., 40:9 (1999), 4569–4586 ; arXiv: math/9806014 | DOI | MR | Zbl
[13] S. M. Khoroshkin, A. A. Stolin, V. N. Tolstoy, Comm. Algebra, 26:4 (1998), 1041–1055 | DOI | MR | Zbl
[14] M. Henkel, “Reaction-diffusion processes and their connection with integrable quantum spin chains”, Classical and Quantum Nonlinear Integrable Systems: Theory and Applications, ed. A. Kundu, Institute of Physics, Bristol, 2003, 256–287; arXiv: cond-mat/0303512
[15] E. K. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl
[16] V. Chari, A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[17] I. V. Cherednik, TMF, 61:1 (1984), 35–44 | DOI | MR | Zbl
[18] P. P. Kulish, E. K. Sklyanin, J. Phys. A, 25:22 (1992), 5963–5975 | DOI | MR | Zbl
[19] L. Freidel, J.-M. Maillet, Phys. Lett. B, 262:2–3 (1991), 278–284 | DOI | MR
[20] P. P. Kulish, R. Sasaki, Progr. Theoret. Phys., 89:3 (1993), 741–761 | DOI | MR
[21] Z. Nagy, J. Avan, A. Doikou, G. Rollet, J. Math. Phys., 46:8 (2005), 083516 | DOI | MR | Zbl
[22] S. Ghoshal, A. B. Zamolodchikov, Internat. J. Modern Phys. A, 9:21 (1994), 3841–3885 | DOI | MR | Zbl
[23] T. Inami, H. Konno, J. Phys. A, 27:24 (1994), L913–L918 | DOI | MR | Zbl
[24] H. J. de Vega, A. González-Ruiz, J. Phys. A, 27:18 (1994), 6129–6137 | DOI | MR | Zbl
[25] A. Doikou, Nucl. Phys. B, 725:3 (2005), 493–530 ; arXiv: math-ph/0409060 | DOI | MR | Zbl
[26] P. P. Kulish, A. I. Mudrov, Lett. Math. Phys., 75:2 (2006), 151–170 | DOI | MR | Zbl
[27] D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, J. Stat. Mech. Theory Exp., 2004:8 (2004), 08005 | DOI | MR | Zbl