A limit symmetry of the Korteweg–de Vries equation and its applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 277-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a symmetry of the Korteweg–de Vries (KdV) equation. This symmetry can be related to the squared eigenfunction symmetry by a limit procedure. As applications, we consider the similarity reduction of the KdV equation and a KdV equation with new self-consistent sources. We derive some solutions via a bilinear approach.
Keywords: symmetry, KdV equation, symmetry constraint, self-consistent source, bilinear method.
@article{TMF_2010_163_2_a3,
     author = {Zhang Da-jun and Jian-bing Zhang and Qing Shen},
     title = {A~limit symmetry of {the~Korteweg{\textendash}de} {Vries} equation and its applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--287},
     year = {2010},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/}
}
TY  - JOUR
AU  - Zhang Da-jun
AU  - Jian-bing Zhang
AU  - Qing Shen
TI  - A limit symmetry of the Korteweg–de Vries equation and its applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 277
EP  - 287
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/
LA  - ru
ID  - TMF_2010_163_2_a3
ER  - 
%0 Journal Article
%A Zhang Da-jun
%A Jian-bing Zhang
%A Qing Shen
%T A limit symmetry of the Korteweg–de Vries equation and its applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 277-287
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/
%G ru
%F TMF_2010_163_2_a3
Zhang Da-jun; Jian-bing Zhang; Qing Shen. A limit symmetry of the Korteweg–de Vries equation and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 277-287. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/

[1] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[2] G. W. Bluman, S. C. Anco, Symmetry and Integration Methods in Differential Equations, Appl. Math. Sci., 154, Springer, New York, 2002 | MR | Zbl

[3] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Comm. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR | Zbl

[4] C. W. Cao, X. G. Geng, “Classical integrable systems generated through nonlinearization of eigenvalue problems”, Nonlinear Physics, Res. Rep. Phys., eds. C. H. Gu, Y. S. Li, G. Z. Tu, Springer, Berlin, 1994, 68–78 | MR | Zbl

[5] C. W. Cao, Sci. China Ser. A, 33:5 (1990), 528–536 | MR | Zbl

[6] C. W. Cao, X. G. Geng, J. Phys. A, 23:18 (1990), 4117–4125 | DOI | MR | Zbl

[7] M. Antonowicz, Phys. Lett. A, 165:1 (1992), 47–52 | DOI | MR

[8] Y. B. Zeng, Y. S. Li, J. Phys. A, 26:5 (1993), L273–L278 | DOI | MR | Zbl

[9] R. Lin, Y. Zeng, W.-X. Ma, Physica A, 291:1–4 (2001), 287–298 | DOI | MR | Zbl

[10] R. Hirota, Phys. Rev. Lett., 27:18 (1971), 1192–1194 | DOI | Zbl

[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts Math., 155, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[12] M. Wadati, K. Ohkuma, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI | MR

[13] H. Tsuru, M. Wadati, J. Phys. Soc. Japan, 53 (1984), 2908–2921 | DOI | MR

[14] V. B. Matveev, Phys. Lett. A, 166:3–4 (1992), 205–208 | DOI | MR

[15] V. B. Matveev, TMF, 131:1 (2002), 44–61 | DOI | MR | Zbl