A~limit symmetry of the~Korteweg--de Vries equation and its applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 277-287
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss a symmetry of the Korteweg–de Vries (KdV) equation. This symmetry can be related to the squared eigenfunction symmetry by a limit procedure. As applications, we consider the similarity reduction of the KdV equation and a KdV equation with new self-consistent sources. We derive some solutions via a bilinear approach.
Keywords:
symmetry, KdV equation, symmetry constraint, self-consistent source, bilinear method.
@article{TMF_2010_163_2_a3,
author = {Zhang Da-jun and Jian-bing Zhang and Qing Shen},
title = {A~limit symmetry of {the~Korteweg--de} {Vries} equation and its applications},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {277--287},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/}
}
TY - JOUR AU - Zhang Da-jun AU - Jian-bing Zhang AU - Qing Shen TI - A~limit symmetry of the~Korteweg--de Vries equation and its applications JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 277 EP - 287 VL - 163 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/ LA - ru ID - TMF_2010_163_2_a3 ER -
%0 Journal Article %A Zhang Da-jun %A Jian-bing Zhang %A Qing Shen %T A~limit symmetry of the~Korteweg--de Vries equation and its applications %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 277-287 %V 163 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/ %G ru %F TMF_2010_163_2_a3
Zhang Da-jun; Jian-bing Zhang; Qing Shen. A~limit symmetry of the~Korteweg--de Vries equation and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 277-287. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a3/