New and old results in resultant theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 222-257
Voir la notice de l'article provenant de la source Math-Net.Ru
Resultants play an increasingly important role in modern theoretical physics: they appear whenever we have nonlinear (polynomial) equations, nonquadratic forms, or non-Gaussian integrals. Being a research subject for more than three hundred years, resultants are already quite well studied, and many explicit formulas, interesting properties, and unexpected relations are known. We present a brief overview of these results, from classical ones to those obtained relatively recently. We emphasize explicit formulas that could bring practical benefit in future physical research.
Keywords:
resultant, non-Gaussian integral, nonlinear algebra.
Mots-clés : discriminant
Mots-clés : discriminant
@article{TMF_2010_163_2_a1,
author = {A. Yu. Morozov and Sh. R. Shakirov},
title = {New and old results in resultant theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--257},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a1/}
}
A. Yu. Morozov; Sh. R. Shakirov. New and old results in resultant theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 222-257. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a1/