Mots-clés : discriminant
@article{TMF_2010_163_2_a1,
author = {A. Yu. Morozov and Sh. R. Shakirov},
title = {New and old results in resultant theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--257},
year = {2010},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a1/}
}
A. Yu. Morozov; Sh. R. Shakirov. New and old results in resultant theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 222-257. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a1/
[1] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Sci., Hackensack, NJ, 2007 ; arXiv: hep-th/0609022 | MR | Zbl
[2] E. Bézout, Théorie générale des Equations Algébriques, De l'Imprimerie de Ph.-D. Pierres, Paris, 1779 ; J. J. Sylvester, Philos. Magazine, 16 (1840), 132–135; “A method of determining by mere inspection the derivatives from two equations of any degree”, The Collected Mathematical Papers of James Joseph Sylvester, V. I, Cambridge Univ. Press, Cambridge, 1904, 54–57 ; A. Cayley, Cambridge and Dublin Math. J., 3 (1848), 116–120; F. S. Macaulay, Proc. London Math. Soc., 35 (1903), 3–27 ; A. L. Dixon, Proc. London Math. Soc., 6 (1908), 468–478 | MR | Zbl | Zbl | MR | Zbl | DOI | Zbl
[3] I. Gel'fand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Mathematics: Theory and Applications, Birkhäuser, Boston, 1994 ; И. М. Гельфанд, А. В. Зелевинский, М. М. Капранов, Алгебра и анализ, 2:3 (1990), 1–62 | MR | Zbl | MR | Zbl
[4] A. Yu. Morozov, UFN, 162:8 (1992), 83–175 | DOI
[5] A. Morozov, Sh. Shakirov, JHEP, 12 (2009), 002 ; arXiv: 0903.2595 | DOI
[6] P. Aluffi, F. Cukierman, Manuscripta Math., 78:3 (1993), 245–258 ; M. Chardin, J. Pure Appl. Algebra, 101:2 (1995), 129–138 ; L. Ducos, J. Pure Appl. Algebra, 145:2 (2000), 149–163 ; L. Busé, C. D'Andrea, C. R. Math. Acad. Sci. Paris, 338:4 (2004), 287–290 ; C. D' Andrea, T. Krick, A. Szanto, J. Algebra, 302:1 (2006), 16–36 ; arXiv: math/0501281 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[7] A. D. Vlasov, TMF, 163:1 (2010), 45–78 ; arXiv: 0907.4249 | DOI | Zbl
[8] L. I. Nicolaescu, Notes on the Reidemeister torsion, ; В. Г. Тураев, УМН, 41:1(247) (1986), 97–147 http://www.nd.edu/~lnicolae/Torsion.pdf | DOI | MR | Zbl
[9] A. S. Anokhina, A. Yu. Morozov, Sh. R. Shakirov, TMF, 160:3 (2009), 403–433 ; arXiv: 0812.5013 | DOI | MR | Zbl
[10] K. Kalorkoti, On Macaulay form of the resultant, http://homepages.inf.ed.ac.uk/kk/Reports/Macaulay.pdf
[11] D. Eisenbud, F.-O. Schreyer, J. Amer. Math. Soc., 16:3 (2003), 537–579 ; arXiv: math/0111040 | DOI | MR | Zbl
[12] A. Khetan, J. Pure Appl. Algebra, 198:1–3 (2005), 237–256 ; arXiv: math/0310478 | DOI | MR | Zbl
[13] B. Gustafsson, V. G. Tkachev, Comm. Math. Phys., 286:1 (2009), 313–358 ; ; A. Morozov, Sh. Shakirov, Analogue of the identity $\text{LogDet}=\text{TraceLog}$ for resultants, ; Resultants and contour integrals, arXiv: 0710.2326arXiv: 0804.4632arXiv: 0807.4539 | DOI | MR | Zbl
[14] N. D. Beklemishev, Vestn. MGU. Cer. matem., mekh., 1982, no. 2, 42–49 ; D. Hilbert, Theory of Algebraic Invariants, ed. B. Sturmfels, Cambridge Univ. Press, Cambridge, 1993 ; H. Derksen, G. Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups. I, Encyclopedia Math. Sci., 130, Springer, Berlin, 2002 ; B. Sturmfels, Algorithms in Invariant Theory, Texts Monogr. Symbolic Comput., Springer, Wien, 2008 | MR | Zbl | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[15] N. Perminov, Sh. Shakirov, Discriminants of symmetric polynomials, ; Н. С. Перминов, Гиперкомплексные числа в геометрии и физике, 6:1(11) (2009), 68–71 arXiv: 0910.5757
[16] M. Abramovits, I. Stegun (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 ; И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Физматлит, М., 1963 | MR | MR | Zbl | MR | MR | Zbl
[17] A. Yu. Morozov, M. N. Serbin, TMF, 154:2 (2008), 316–343 | DOI | MR | Zbl
[18] B. Sturmfels, Discrete Math., 15:1–3 (2000), 171–181 ; M. Glasser, The quadratic formula made hard: A less radical approach to solving equations, arXiv: math/9411224 | DOI | MR | Zbl
[19] A. Rej, M. Marcolli, Motives: an introductory survey for physicists, arXiv: 0907.4046 | MR
[20] V. Dolotin, A. Morozov, The Universal Mandelbrot Set. Beginning of the Story, World Sci., Hackensack, NJ, 2006 ; Algebraic geometry of discrete dynamics. The case of one variable, ; Internat. J. Modern Phys. A, 23:22 (2008), 3613–3684 ; ; A. Morozov, Письма в ЖЭТФ, 86:11 (2007), 856–859 arXiv: hep-th/0501235arXiv: hep-th/0701234 | MR | Zbl | DOI | MR | Zbl | DOI