Integrable $(2+1)$-dimensional systems of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the results that have so far been obtained in the classification problem for integrable $(2+1)$-dimensional systems of hydrodynamic type. The Gibbons–Tsarev (GT) systems are most fundamental here. A whole class of integrable $(2+1)$-dimensional models is related to each such system. We present the known GT systems related to algebraic curves of genus $g=0$ and $g=1$ and also a new GT system corresponding to algebraic curves of genus $g=2$. We construct a wide class of integrable models generated by the simplest GT system, which was not considered previously because it is “trivial”.
Keywords: dispersionless integrable system, hydrodynamic reduction, Gibbons–Tsarev system.
@article{TMF_2010_163_2_a0,
     author = {A. V. Odesskii and V. V. Sokolov},
     title = {Integrable $(2+1)$-dimensional systems of hydrodynamic type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--221},
     year = {2010},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. V. Sokolov
TI  - Integrable $(2+1)$-dimensional systems of hydrodynamic type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 179
EP  - 221
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/
LA  - ru
ID  - TMF_2010_163_2_a0
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. V. Sokolov
%T Integrable $(2+1)$-dimensional systems of hydrodynamic type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 179-221
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/
%G ru
%F TMF_2010_163_2_a0
A. V. Odesskii; V. V. Sokolov. Integrable $(2+1)$-dimensional systems of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/

[1] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | MR | Zbl

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[3] V. E. Zakharov (ed.), What is Integrability?, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1991 | DOI | MR | Zbl

[4] A. V. Mikhailov, Integrability, Lecture Notes in Phys., 767, Springer, Berlin, 2009 | DOI | MR | Zbl

[5] E. V. Zakharov, “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular Limits of Dispersive Waves, NATO ASI Ser. B Phys., 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum Press, New York, 1994, 165–174 | DOI | MR | Zbl

[6] I. M. Krichever, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[7] A. V. Odesskii, V. V. Sokolov, Funkts. analiz i ego pril., 42:3 (2008), 53–62 | DOI | MR | Zbl

[8] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | MR | Zbl

[9] M. V. Saveliev, A. M. Vershik, Comm. Math. Phys., 126:2 (1989), 367–378 | DOI | MR | Zbl

[10] S. V. Manakov, P. M. Santini, Phys. Lett. A, 359:6 (2006), 613–619 | DOI | MR | Zbl

[11] S. V. Manakov, P. M. Santini, TMF, 152:1 (2007), 147–156 | DOI | MR | Zbl

[12] J. Gibbons, S. P. Tsarev, Phys. Lett. A, 211:1 (1996), 19–24 | DOI | MR | Zbl

[13] E. V. Ferapontov, K. R. Khusnutdinova, Comm. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[14] E. V. Ferapontov, K. R. Khusnutdinova, J. Phys. A, 37:8 (2004), 2949–2963 | DOI | MR | Zbl

[15] E. V. Ferapontov, K. R. Khusnutdinova, J. Math. Phys., 45:6 (2004), 2365–2377 | DOI | MR | Zbl

[16] A. V. Odesskii, Selecta Math., 13:4 (2008), 727–742 ; arXiv: 0704.3577 | DOI | MR | Zbl

[17] E. V. Ferapontov, K. R. Khusnutdinova, S. P. Tsarev, Comm. Math. Phys., 261:1 (2006), 225–243 | DOI | MR | Zbl

[18] E. V. Ferapontov, A. V. Odesskii, Integrable Lagrangians and modular forms, arXiv: 0707.3433 | MR

[19] P. A. Burovskiy, E. V. Ferapontov, S. P. Tsarev, Second order quasilinear PDEs and conformal structures in projective space, arXiv: 0802.2626 | MR

[20] A. V. Odesskii, V. V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions, arXiv: 0803.0086 | MR

[21] I. M. Gelfand, M. I. Graev, V. S. Retakh, UMN, 47:4(286) (1992), 3–82 | DOI | MR | Zbl

[22] E. V. Ferapontov, L. Hadjikos, K. R. Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, arXiv: 0705.1774 | MR

[23] M. V. Pavlov, TMF, 138:1 (2004), 55–70 | DOI | MR | Zbl

[24] M. V. Pavlov, J. Phys. A, 39:34 (2006), 10803–10819 | DOI | MR | Zbl

[25] E. V. Ferapontov, D. G. Marshal, Math. Ann., 339:1 (2007), 61–99 | DOI | MR | Zbl

[26] I. M. Krichever, Comm. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl

[27] A. V. Odesskii, M. V. Pavlov, V. V. Sokolov, TMF, 154:2 (2008), 249–260 ; arXiv: 0710.5655 | DOI | MR | Zbl

[28] A. V. Odesskii, V. V. Sokolov, TMF, 161:1 (2009), 21–36 ; arXiv: 0810.3879 | DOI | MR | Zbl

[29] V. P. Spiridonov, UMN, 69:3(381) (2008), 3–72 | DOI | MR | Zbl

[30] K. Löwner, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[31] K. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR | Zbl

[32] V. Shramchenko, J. Phys. A, 36:42 (2003), 10585–10605 | DOI | MR | Zbl

[33] T. Takebe, L.-P. Leo, A. Zabrodin, J. Phys. A, 39 (2006), 11479–11501 | DOI | MR | Zbl

[34] M. Mañas, E. Medina, L. Martínes Alonso, J. Phys. A, 39:10 (2006), 2349–2381 | DOI | MR | Zbl

[35] A. V. Mikhailov, V. V. Sokolov, “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Phys., 767, Springer, Berlin, 2009, 19–88 | DOI | MR | Zbl

[36] A. V. Mikhailov, R. I. Yamilov, J. Phys. A, 31:31 (1998), 6707–6715 | DOI | MR | Zbl

[37] B. A. Dubrovin, S. P. Novikov, UMN, 44:6(270) (1989), 29–98 | DOI | MR | Zbl

[38] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[39] S. P. Tsarev, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[40] E. V. Ferapontov, Phys. Lett. A, 158:3–4 (1991), 112–118 | DOI | MR

[41] M. V. Pavlov, J. Math. Phys., 44:9 (2003), 4134–4156 | DOI | MR | Zbl

[42] M. V. Pavlov, Comm. Math. Phys., 272:2 (2007), 469–505 | DOI | MR | Zbl

[43] E. V. Ferapontov, K. R. Khusnutinova, C. Klein, On linear degeneracy of integrable quasilinear systems in higher dimensions, arXiv: 0909.5685 | MR

[44] A. V. Odesskii, V. V. Sokolov, Systems of Gibbons–Tsarev type and integrable 3-dimensional models, arXiv: 0906.3509

[45] D. J. Benney, Stud. Appl. Math., 52 (1973), 45–50 | DOI | Zbl

[46] B. A. Kupershmidt, Yu. I. Manin, Funkts. analiz i ego pril., 11:3 (1977), 31–42 | DOI | MR | Zbl

[47] V. E. Zakharov, Physica D, 3:1–2 (1981), 193–202 | DOI | Zbl

[48] L. Martines Alonso, A. B. Shabat, TMF, 140:2 (2004), 216–229 | DOI | MR