Integrable $(2+1)$-dimensional systems of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the results that have so far been obtained in the classification problem for integrable $(2+1)$-dimensional systems of hydrodynamic type. The Gibbons–Tsarev (GT) systems are most fundamental here. A whole class of integrable $(2+1)$-dimensional models is related to each such system. We present the known GT systems related to algebraic curves of genus $g=0$ and $g=1$ and also a new GT system corresponding to algebraic curves of genus $g=2$. We construct a wide class of integrable models generated by the simplest GT system, which was not considered previously because it is “trivial”.
Keywords:
dispersionless integrable system, hydrodynamic reduction, Gibbons–Tsarev system.
@article{TMF_2010_163_2_a0,
author = {A. V. Odesskii and V. V. Sokolov},
title = {Integrable $(2+1)$-dimensional systems of hydrodynamic type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--221},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/}
}
TY - JOUR AU - A. V. Odesskii AU - V. V. Sokolov TI - Integrable $(2+1)$-dimensional systems of hydrodynamic type JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 179 EP - 221 VL - 163 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/ LA - ru ID - TMF_2010_163_2_a0 ER -
A. V. Odesskii; V. V. Sokolov. Integrable $(2+1)$-dimensional systems of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/