Integrable $(2+1)$-dimensional systems of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the results that have so far been obtained in the classification problem for integrable $(2+1)$-dimensional systems of hydrodynamic type. The Gibbons–Tsarev (GT) systems are most fundamental here. A whole class of integrable $(2+1)$-dimensional models is related to each such system. We present the known GT systems related to algebraic curves of genus $g=0$ and $g=1$ and also a new GT system corresponding to algebraic curves of genus $g=2$. We construct a wide class of integrable models generated by the simplest GT system, which was not considered previously because it is “trivial”.
Keywords: dispersionless integrable system, hydrodynamic reduction, Gibbons–Tsarev system.
@article{TMF_2010_163_2_a0,
     author = {A. V. Odesskii and V. V. Sokolov},
     title = {Integrable $(2+1)$-dimensional systems of hydrodynamic type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--221},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. V. Sokolov
TI  - Integrable $(2+1)$-dimensional systems of hydrodynamic type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 179
EP  - 221
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/
LA  - ru
ID  - TMF_2010_163_2_a0
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. V. Sokolov
%T Integrable $(2+1)$-dimensional systems of hydrodynamic type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 179-221
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/
%G ru
%F TMF_2010_163_2_a0
A. V. Odesskii; V. V. Sokolov. Integrable $(2+1)$-dimensional systems of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 2, pp. 179-221. http://geodesic.mathdoc.fr/item/TMF_2010_163_2_a0/