Symmetry algebra of the AdS$_4{\times}\mathbb{CP}^3$ superstring
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 114-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By direct calculation in the classical theory, we derive the central extension of the off-shell symmetry algebra for a string propagating in AdS$_4\times\mathbb{CP}^3$. It turns out to be the same as in the case of the AdS$_5\times S^5$ string. We consider the choice of the $\kappa$-symmetry gauge in detail and also explain how this gauge can be chosen without breaking the bosonic symmetries.
Keywords: AdS/CFT correspondence, Green–Schwarz superstring, integrable models.
@article{TMF_2010_163_1_a7,
     author = {D. V. Bykov},
     title = {Symmetry algebra of {the~AdS}$_4{\times}\mathbb{CP}^3$ superstring},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {114--131},
     year = {2010},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a7/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - Symmetry algebra of the AdS$_4{\times}\mathbb{CP}^3$ superstring
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 114
EP  - 131
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a7/
LA  - ru
ID  - TMF_2010_163_1_a7
ER  - 
%0 Journal Article
%A D. V. Bykov
%T Symmetry algebra of the AdS$_4{\times}\mathbb{CP}^3$ superstring
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 114-131
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a7/
%G ru
%F TMF_2010_163_1_a7
D. V. Bykov. Symmetry algebra of the AdS$_4{\times}\mathbb{CP}^3$ superstring. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 114-131. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a7/

[1] J. M. Maldacena, Adv. Theor. Math. Phys., 2:2 (1998), 231–252 ; ; Internat. J. Theoret. Phys., 38:4 (1999), 1113–1133 arXiv: hep-th/9711200 | DOI | MR | Zbl | DOI | MR | Zbl

[2] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, Phys. Lett. B, 428:1–2 (1998), 105–114 ; arXiv: hep-th/9802109 | DOI | MR | Zbl

[3] E. Witten, Adv. Theor. Math. Phys., 2:2 (1998), 253–291 ; arXiv: hep-th/9802150 | DOI | MR | Zbl

[4] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, JHEP, 10 (2008), 091 ; arXiv: 0806.1218 | DOI | MR | Zbl

[5] J. A. Minahan, K. Zarembo, JHEP, 09 (2008), 040 ; arXiv: 0806.3951 | DOI | MR

[6] N. Gromov, P. Vieira, JHEP, 02 (2009), 040 ; arXiv: 0807.0437 | DOI | MR

[7] N. Gromov, P. Vieira, JHEP, 01 (2009), 016 ; arXiv: 0807.0777 | DOI | MR

[8] C. Ahn, R. I. Nepomechie, JHEP, 09 (2008), 010 ; arXiv: 0807.1924 | DOI | MR

[9] G. Arutyunov, S. Frolov, JHEP, 09 (2008), 129 ; arXiv: 0806.4940 | DOI | MR

[10] B. Stefański Jr., Nucl. Phys. B, 808:1–2 (2009), 80–87 ; arXiv: 0806.4948 | DOI | MR | Zbl

[11] T. McLoughlin, R. Roiban, JHEP, 12 (2008), 101 ; ; L. F. Alday, G. Arutyunov, D. Bykov, JHEP, 11 (2008), 089 ; ; C. Krishnan, JHEP, 09 (2008), 092 ; arXiv: 0807.3965arXiv: 0807.4400arXiv: 0807.4561 | DOI | MR | Zbl | DOI | MR | DOI | MR

[12] T. McLoughlin, R. Roiban, A. A. Tseytlin, JHEP, 11 (2008), 069 ; arXiv: 0809.4038 | DOI | MR

[13] T. Nishioka, T. Takayanagi, JHEP, 08 (2008), 001 ; arXiv: 0806.3391 | DOI | MR

[14] K. Zarembo, JHEP, 04 (2009), 135 ; arXiv: 0903.1747 | DOI

[15] N. Beisert, Adv. Theor. Math. Phys., 12:5 (2008), 945–979 ; arXiv: hep-th/0511082 | DOI | MR

[16] J. Gomis, D. Sorokin, L. Wulff, JHEP, 03 (2009), 015 ; arXiv: 0811.1566 | DOI | MR

[17] P. A. Grassi, D. Sorokin, L. Wulff, JHEP, 08 (2009), 060 ; arXiv: 0903.5407 | DOI

[18] G. Grignani, T. Harmark, M. Orselli, Nucl. Phys. B, 810:1–2 (2009), 115–134 ; arXiv: 0806.4959 | DOI | MR | Zbl | MR

[19] D. Astolfi, V. G. M. Puletti, G. Grignani, T. Harmark, M. Orselli, Nucl. Phys. B, 810:1–2 (2009), 150–173 ; arXiv: 0807.1527 | DOI | MR | Zbl

[20] P. Sundin, JHEP, 02 (2009), 046 ; arXiv: 0811.2775 | DOI | MR

[21] G. Arutyunov, S. Frolov, J. Plefka, M. Zamaklar, J. Phys. A, 40:13 (2007), 3583–3605 ; arXiv: hep-th/0609157 | DOI | MR | Zbl

[22] G. Arutyunov, S. Frolov, J. Phys. A, 42:25 (2009), 254003 ; arXiv: 0901.4937 | DOI | MR | Zbl

[23] S. Frolov, J. Plefka, M. Zamaklar, J. Phys. A, 39:41 (2006), 13037–13081 ; arXiv: hep-th/0603008 | DOI | MR | Zbl

[24] J. A. de Azcárraga, J. Lukierski, Phys. Lett. B, 113:2 (1982), 170–174 | DOI

[25] W. Siegel, Phys. Lett. B, 128:6 (1983), 397–399 | DOI

[26] M. B. Green, J. H. Schwarz, Phys. Lett. B, 136:5–6 (1984), 367–370 | DOI

[27] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory. V. 1: Introduction, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[28] B. de Wit, D. Z. Freedman, Phys. Rev. D, 12:8 (1975), 2286–2297 | DOI | MR

[29] N. Beisert, J. Stat. Mech., 01 (2007), P01017 ; arXiv: nlin/0610017 | DOI

[30] D. M. Hofman, J. M. Maldacena, J. Phys. A, 39:41 (2006), 13095–13117 ; arXiv: hep-th/0604135 | DOI | MR | Zbl