Interaction of a breather with a magnetization wave in a ferromagnet with light-axis anisotropy
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 94-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the dressing method to find exact solutions of the Landau–Lifshitz equation for a ferromagnet with light-axis anisotropy. These solutions describe the interaction of a nonlinear precession wave of arbitrary amplitude with solitons. We analyze the change of the internal structure and the physical parameters of the solitons as a result of their interaction with the magnetization wave. We find an infinite series of integrals of motion that stabilize the soliton on the background of the pumping wave.
Keywords: breather, domain boundary, nonlinear magnetization wave, Landau–Lifshitz equation, Riemann problem, dressing method.
@article{TMF_2010_163_1_a6,
     author = {V. V. Kiselev and A. A. Raskovalov},
     title = {Interaction of a~breather with a~magnetization wave in a~ferromagnet with light-axis anisotropy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--113},
     year = {2010},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a6/}
}
TY  - JOUR
AU  - V. V. Kiselev
AU  - A. A. Raskovalov
TI  - Interaction of a breather with a magnetization wave in a ferromagnet with light-axis anisotropy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 94
EP  - 113
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a6/
LA  - ru
ID  - TMF_2010_163_1_a6
ER  - 
%0 Journal Article
%A V. V. Kiselev
%A A. A. Raskovalov
%T Interaction of a breather with a magnetization wave in a ferromagnet with light-axis anisotropy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 94-113
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a6/
%G ru
%F TMF_2010_163_1_a6
V. V. Kiselev; A. A. Raskovalov. Interaction of a breather with a magnetization wave in a ferromagnet with light-axis anisotropy. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 94-113. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a6/

[1] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[2] M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, D. M. Shamsutdinov, Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Gilem, Ufa, 2007

[3] A. V. Mikhailov, A. I. Yaremchuk, Pisma v ZhETF, 39:7 (1984), 296–298

[4] A. I. Yaremchuk, TMF, 62:1 (1985), 153–158 | DOI | MR

[5] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[6] R. F. Bikbaev, A. I. Bobenko, A. R. Its, Uravnenie Landau–Lifshitsa. Teoriya tochnykh reshenii. II, Preprint-Don-FTI, Donetsk, 1984 | MR

[7] R. F. Bikbaev, A. I. Bobenko, A. R. Its, Dokl. AN SSSR, 272:6 (1983), 1293–1298 | MR | Zbl

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 3. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | MR | Zbl

[9] A. E. Borovik, S. Klama, S. I. Kulinch, Phys. D, 32:1 (1988), 107–134 | DOI | MR | Zbl

[10] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[11] A. V. Mikhailov, “Integrable magnetic models”, Solitons, Modern Problem in Condensed Matter Sci., 17, eds. S. E. Trullinger, V. E. Zakharov, V. L. Pokrovsky, Elsiver Sci., Amsterdam, 1986, 625–690 | Zbl

[12] Yu. L. Rodin, Phys. D, 11:1–2 (1984), 90–108 | DOI | MR | Zbl

[13] A. B. Borisov, V. V. Kiselev, TMF, 54:2 (1983), 246–257 | DOI | MR