Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 34-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a model Schrödinger operator $H_\mu$ associated with a system of three particles on the three-dimensional lattice $\mathbb Z^3$ with a functional parameter of special form. We prove that if the corresponding Friedrichs model has a zero-energy resonance, then the operator $H_\mu$ has infinitely many negative eigenvalues accumulating at zero (the Efimov effect). We obtain the asymptotic expression for the number of eigenvalues of $H_\mu$ below $z$ as $z\to-0$.
Keywords:
model operator, Friedrichs model, Birman–Schwinger principle, Efimov effect, Hilbert–Schmidt operator, zero-energy resonance, discrete spectrum.
@article{TMF_2010_163_1_a2,
author = {T. H. Rasulov},
title = {Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {34--44},
publisher = {mathdoc},
volume = {163},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/}
}
TY - JOUR AU - T. H. Rasulov TI - Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 34 EP - 44 VL - 163 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/ LA - ru ID - TMF_2010_163_1_a2 ER -
%0 Journal Article %A T. H. Rasulov %T Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 34-44 %V 163 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/ %G ru %F TMF_2010_163_1_a2
T. H. Rasulov. Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 34-44. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/