Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 34-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model Schrödinger operator $H_\mu$ associated with a system of three particles on the three-dimensional lattice $\mathbb Z^3$ with a functional parameter of special form. We prove that if the corresponding Friedrichs model has a zero-energy resonance, then the operator $H_\mu$ has infinitely many negative eigenvalues accumulating at zero (the Efimov effect). We obtain the asymptotic expression for the number of eigenvalues of $H_\mu$ below $z$ as $z\to-0$.
Keywords: model operator, Friedrichs model, Birman–Schwinger principle, Efimov effect, Hilbert–Schmidt operator, zero-energy resonance, discrete spectrum.
@article{TMF_2010_163_1_a2,
     author = {T. H. Rasulov},
     title = {Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--44},
     year = {2010},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 34
EP  - 44
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/
LA  - ru
ID  - TMF_2010_163_1_a2
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 34-44
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/
%G ru
%F TMF_2010_163_1_a2
T. H. Rasulov. Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 34-44. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a2/

[1] V. Efimov, YaF, 12 (1970), 1080–1091

[2] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[3] A. V. Sobolev, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[4] H. Tamura, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR | Zbl

[5] X. P. Wang, J. Func. Anal., 209:1 (2004), 137–161 | DOI | MR | Zbl

[6] D. C. Mattis, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[7] A. I. Mogilner, “The problem of a few quasi-particles in solid-state physics”, Applications of Self-Adjoint Extensions in Quantum Physics, Lecture Notes in Phys., 324, eds. P. Exner, P. Šeba, 1989, 160–173 | DOI | MR | Zbl

[8] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | DOI | MR

[9] S. N. Lakaev, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[10] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[11] Zh. I. Abdullaev, S. N. Lakaev, TMF, 136:2 (2003), 231–245 | DOI | MR | Zbl

[12] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[13] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl