A new approach for describing glass transition kinetics
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 163-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a functional integral technique generalizing the Keldysh diagram technique to describe glass transition kinetics. We show that the Keldysh functional approach takes the dynamical determinant arising in the glass dynamics into account exactly and generalizes the traditional approach based on using the supersymmetric dynamic generating functional method. In contrast to the supersymmetric method, this approach allows avoiding additional Grassmannian fields and tracking the violation of the fluctuation-dissipation theorem explicitly. We use this method to describe the dynamics of an Edwards–Anderson soft spin-glass-type model near the paramagnet–glass transition. We show that a Vogel–Fulcher-type dynamics arises in the fluctuation region only if the fluctuation-dissipation theorem is violated in the process of dynamical renormalization of the Keldysh action in the replica space.
Mots-clés : glass transition, Keldysh technique.
Keywords: nonequilibrium transition
@article{TMF_2010_163_1_a11,
     author = {M. G. Vasin and N. M. Shchelkachev and V. M. Vinokur},
     title = {A~new approach for describing glass transition kinetics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--176},
     year = {2010},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a11/}
}
TY  - JOUR
AU  - M. G. Vasin
AU  - N. M. Shchelkachev
AU  - V. M. Vinokur
TI  - A new approach for describing glass transition kinetics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 163
EP  - 176
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a11/
LA  - ru
ID  - TMF_2010_163_1_a11
ER  - 
%0 Journal Article
%A M. G. Vasin
%A N. M. Shchelkachev
%A V. M. Vinokur
%T A new approach for describing glass transition kinetics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 163-176
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a11/
%G ru
%F TMF_2010_163_1_a11
M. G. Vasin; N. M. Shchelkachev; V. M. Vinokur. A new approach for describing glass transition kinetics. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 163-176. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a11/

[1] L. F. Cugliandolo, Dynamics of glassy systems, arXiv: cond-mat/0210312

[2] S. L. Ginzburg, Neobratimye yavleniya v spinovykh steklakh, Sovremennye problemy fiziki, 79, Nauka, M., 1989 | MR

[3] D. R. Reichman, P. Charbonneau, J. Stat. Mech., 05 (2005), 05013 | DOI

[4] G. Parisi, N. Sourlas, Phys. Rev. Lett., 43:11 (1979), 744–745 | DOI

[5] J. Kurchan, J. Phys. I (France), 2:7 (1992), 1333–1352 | DOI

[6] L. V. Keldysh, ZhETF, 47:5 (1964), 1515–1527 | MR

[7] A. Kamenev, “Many-body theory of non-equilibrium systems”, Nanophysics: Coherence and Transport, Volume Session LXXXI Lecture Notes of the Les Houches Summer School 2004, eds. H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard, Elsevier, Amsterdam, 2005, 177–246

[8] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8:1 (1973), 423–437 ; C. De Dominics, “Techniques de renormalisation de la theorie des champs et dynamique des phenomenes critiques”, Hydrodynamique Physique et Instabilites (Physical Hydrodynamics and Instabilities), J. Phys. Colloques, 37, Suppl. C1, 1976, C1-247–C1-253 | DOI | DOI

[9] P. C. Hohenberg, B. I. Halperin, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI

[10] M. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR | Zbl

[11] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR | MR

[12] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett., 35:26 (1975), 1792–1796 ; S. Kirkpatrick, D. Sherrington, Phys. Rev. B, 17:11 (1978), 4384–4403 | DOI | DOI

[13] M. Mehta, Random Matrices, Pure Appl. Math., 142, Elsevier, Amsterdam, 2004 | MR | Zbl

[14] R. L. Stratonovich, DAN SSSR, 115 (1957), 1097–1100 ; J. Hubbard, Phys. Rev. Lett., 3:2 (1959), 77–78 | Zbl | DOI

[15] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Nauka, M., 1976 | MR | MR | Zbl

[16] G. Parisi, J. Phys. A, 13:3 (1980), 1101–1112 | DOI | MR

[17] G. Parisi, “Course 6: Glasses, replicas and all that”, Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, Houches, 77, eds. J.-L. Barrat et al., Springer, Berlin–Heidelberg, 2004, 33–63 ; arXiv: cond-mat/0301157 | DOI

[18] M. G. Vasin, TMF, 147:2 (2006), 328–336 | DOI | Zbl

[19] M. V. Feigel'man, A. I. Larkin, M. A. Skvortsov, Phys. Rev. B, 61:18 (2000), 12361–12388 | DOI

[20] I. S. Beloborodov, A. V. Lopatin, G. Schwiete, V. M. Vinokur, Phys. Rev. B, 70:7 (2004), 073404 | DOI

[21] I. S. Burmistrov, N. M. Chtchelkatchev, Phys. Rev. B, 77:19 (2008), 195319 | DOI

[22] S. Chandrasekhar, Rev. Modern Phys., 15 (1943), 1–89 | DOI | MR | Zbl

[23] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR | MR | Zbl