Distribution of a liquid and the effective potential in a bounded system with special geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 156-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We evaluate the density of the distribution of a liquid bounded by a system of coaxial cylinders with a fixed near-wall potential. The problem is solved in the smooth-inhomogeneity approximation for a near-wall potential of arbitrary type. Based on the obtained solution, we analyze the special case where the near-wall potential is essentially short range and remains constant inside each of the sublayers in its range of action. In this case, we evaluate the effective near-wall potential for which the density distribution is a continuous function in the entire domain.
Keywords: density distribution, near-wall potential, spatially bounded system.
@article{TMF_2010_163_1_a10,
     author = {A. N. Vasiliev and A. V. Kulish},
     title = {Distribution of a~liquid and the~effective potential in a~bounded system with special geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {156--162},
     year = {2010},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/}
}
TY  - JOUR
AU  - A. N. Vasiliev
AU  - A. V. Kulish
TI  - Distribution of a liquid and the effective potential in a bounded system with special geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 156
EP  - 162
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/
LA  - ru
ID  - TMF_2010_163_1_a10
ER  - 
%0 Journal Article
%A A. N. Vasiliev
%A A. V. Kulish
%T Distribution of a liquid and the effective potential in a bounded system with special geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 156-162
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/
%G ru
%F TMF_2010_163_1_a10
A. N. Vasiliev; A. V. Kulish. Distribution of a liquid and the effective potential in a bounded system with special geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 156-162. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/

[1] L. A. Bulavin, Neitronnye issledovaniya dinamiki zhidkostei, Vischa shkola, K., 1977

[2] V. Ya. Antonchenko, A. S. Davydov, V. V. Ilin, Osnovy fiziki vody, Naukova dumka, K., 1991 | MR

[3] I. M. Frank, UFN, 161:11 (1991), 109–127 | DOI

[4] I. Brovchenko, A. Geiger, A. Oleinikova, D. Paschek, Eur. Phys. J. E, 12:1 (2003), 69–76 | DOI

[5] L. A. Bulavin, D. A. Gavryushenko, V. M. Sysoev, ZhFKh, 70:3 (1996), 559–561; 70:8, 1525–1526; 70:11, 2102–2103

[6] L. A. Bulavin, D. A. Gavryushenko, V. M. Sysoev, Ukr. J. Phys., 52:10 (2007), 934–938

[7] A. N. Vasilev, TMF, 151:1 (2007), 149–154 | DOI | Zbl

[8] K. Krokston, Fizika zhidkogo sostoyaniya, Mir, M., 1978