Distribution of a liquid and the effective potential in a bounded system with special geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 156-162
Cet article a éte moissonné depuis la source Math-Net.Ru
We evaluate the density of the distribution of a liquid bounded by a system of coaxial cylinders with a fixed near-wall potential. The problem is solved in the smooth-inhomogeneity approximation for a near-wall potential of arbitrary type. Based on the obtained solution, we analyze the special case where the near-wall potential is essentially short range and remains constant inside each of the sublayers in its range of action. In this case, we evaluate the effective near-wall potential for which the density distribution is a continuous function in the entire domain.
Keywords:
density distribution, near-wall potential, spatially bounded system.
@article{TMF_2010_163_1_a10,
author = {A. N. Vasiliev and A. V. Kulish},
title = {Distribution of a~liquid and the~effective potential in a~bounded system with special geometry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {156--162},
year = {2010},
volume = {163},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/}
}
TY - JOUR AU - A. N. Vasiliev AU - A. V. Kulish TI - Distribution of a liquid and the effective potential in a bounded system with special geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 156 EP - 162 VL - 163 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/ LA - ru ID - TMF_2010_163_1_a10 ER -
%0 Journal Article %A A. N. Vasiliev %A A. V. Kulish %T Distribution of a liquid and the effective potential in a bounded system with special geometry %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 156-162 %V 163 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/ %G ru %F TMF_2010_163_1_a10
A. N. Vasiliev; A. V. Kulish. Distribution of a liquid and the effective potential in a bounded system with special geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 163 (2010) no. 1, pp. 156-162. http://geodesic.mathdoc.fr/item/TMF_2010_163_1_a10/
[1] L. A. Bulavin, Neitronnye issledovaniya dinamiki zhidkostei, Vischa shkola, K., 1977
[2] V. Ya. Antonchenko, A. S. Davydov, V. V. Ilin, Osnovy fiziki vody, Naukova dumka, K., 1991 | MR
[3] I. M. Frank, UFN, 161:11 (1991), 109–127 | DOI
[4] I. Brovchenko, A. Geiger, A. Oleinikova, D. Paschek, Eur. Phys. J. E, 12:1 (2003), 69–76 | DOI
[5] L. A. Bulavin, D. A. Gavryushenko, V. M. Sysoev, ZhFKh, 70:3 (1996), 559–561; 70:8, 1525–1526; 70:11, 2102–2103
[6] L. A. Bulavin, D. A. Gavryushenko, V. M. Sysoev, Ukr. J. Phys., 52:10 (2007), 934–938
[7] A. N. Vasilev, TMF, 151:1 (2007), 149–154 | DOI | Zbl
[8] K. Krokston, Fizika zhidkogo sostoyaniya, Mir, M., 1978