Interaction of point and dipole vortices in an incompressible liquid
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 459-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the interaction between point vortices and point dipole vortices in two-dimensional ideal hydrodynamics and show that the equations of motion of the interacting point and point dipole vortices are exactly integrable. We find exact solutions for all possible parameter values characterizing the vortices and for arbitrary initial conditions and establish the regimes of vortex motion.
Keywords: two-dimensional ideal hydrodynamics, Hamiltonian formalism, regime of motion.
Mots-clés : point vortex, point dipole vortex, exact solution
@article{TMF_2010_162_3_a9,
     author = {K. N. Kulik and A. V. Tur and V. V. Yanovskii},
     title = {Interaction of point and dipole vortices in an~incompressible liquid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {459--480},
     year = {2010},
     volume = {162},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/}
}
TY  - JOUR
AU  - K. N. Kulik
AU  - A. V. Tur
AU  - V. V. Yanovskii
TI  - Interaction of point and dipole vortices in an incompressible liquid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 459
EP  - 480
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/
LA  - ru
ID  - TMF_2010_162_3_a9
ER  - 
%0 Journal Article
%A K. N. Kulik
%A A. V. Tur
%A V. V. Yanovskii
%T Interaction of point and dipole vortices in an incompressible liquid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 459-480
%V 162
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/
%G ru
%F TMF_2010_162_3_a9
K. N. Kulik; A. V. Tur; V. V. Yanovskii. Interaction of point and dipole vortices in an incompressible liquid. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 459-480. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/

[1] G. Lamb, Gidrodinamika, Gostekhizdat, OGIZ, 1947 | MR | Zbl

[2] H. M. Glaz, “Two attempts at modeling two-dimensional turbulence”, Turbulence Seminar, Lecture Notes in Math., 615, eds. P. Bernard, T. Ratiu, Springer, Berlin, 1977, 135–155 | DOI | MR | Zbl

[3] W. Gröbli, Z. Naturforsch. A, 22 (1877), 37–82, 129–168 | Zbl

[4] E. A. Novikov, ZhETF, 68:5 (1975), 1868–1882

[5] G. Kirkhgof, Mekhanika, Lektsii po matematicheskoi fizike, AN SSSR, M., 1962 | Zbl

[6] P. G. Saffman, Vortex Dynamics, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[7] E. A. Novikov, Yu. B. Sedov, ZhETF, 75:3 (1978), 868–876 | MR

[8] S. L. Ziglin, DAN SSSR, 250:6 (1979), 1296–1300 | MR | Zbl

[9] H. Aref, J. Fluid Mech., 143 (1984), 1–21 | DOI | MR | Zbl

[10] P. K. Newton, The $N$-Vortex Problem. Analytical Techniques, Appl. Math. Sci., 145, Springer, New York, 2001 | DOI | MR | Zbl

[11] Y. Kimura, J. Phys. Soc. Japan, 57:5 (1988), 1641–1649 | DOI | MR

[12] W. D. McComb, The Physics of Fluid Turbulence, Oxford Eng. Sci. Ser., 5, Clarendon Press, Oxford, 1991 | MR | Zbl

[13] H. Aref, “Integrable, chaotic, and turbulent vortex motion in two-dimensional flows”, Annual Review of Fluid Mechanics, V. 15, eds. Milton Van Dyke, J. V. Wehausen, John L. Lumley, Annual Rev., Palo Alto, Calif., 1983, 345–389 | DOI | MR | Zbl

[14] R. H. Kraichnan, J. Fluid Mech., 67 (1975), 155–175 | DOI | Zbl

[15] Y. B. Pointin, T. S. Lundgren, Phys. Fluids, 19:10 (1976), 1459–1470 | DOI | Zbl

[16] K. S. Fine, A. C. Cass, W. G. Flynn, C. F. Dryscoll, Phys. Rev. Lett., 75:18 (1995), 3277–3280 | DOI

[17] L. Onsager, Nuovo Cimento (9), 6, Suppl. no. 2 (1949), 279–287 | DOI | MR

[18] E. A. Novikov, ZhETF, 68:5 (1975), 1868–1882

[19] V. V. Yanovsky, A. V. Tur, P. Louarn, D. Le Queau, Physics Plazmas, 8:9 (2001), 4255–4258 | DOI

[20] D. Crowdy, Phys. Fluid, 11:9 (1999), 2556–2564 | DOI | MR | Zbl

[21] A. V. Tur, V. V. Yanovsky, Phys. Fluids, 16:8 (2004), 2877–2885 | DOI | MR

[22] V. V. Yanovsky, A. V. Tur, K. N. Kulik, Phys. Lett. A, 373:29 (2009), 2484–2487 | DOI | Zbl

[23] V. V. Meleshko, M. Yu. Konstantinov, Vortex Dynamics and Chaotic Phenomena, World Sci., Singapore, 1999

[24] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959 | MR | Zbl

[25] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | Zbl

[26] F. Dzh. Seffmen, Dinamika vikhrei, Nauchnyi mir, M., 2000 | MR | Zbl

[27] J. Tavantzis and Lu Ting, Phys. Fluids, 31:6 (1988), 1392–1409 | DOI | MR | Zbl

[28] M. I. Postnikov, Analiticheskaya geometriya, Nauka, M., 1979 | MR | MR | Zbl

[29] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | MR | Zbl