Mots-clés : point vortex, point dipole vortex, exact solution
@article{TMF_2010_162_3_a9,
author = {K. N. Kulik and A. V. Tur and V. V. Yanovskii},
title = {Interaction of point and dipole vortices in an~incompressible liquid},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {459--480},
year = {2010},
volume = {162},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/}
}
TY - JOUR AU - K. N. Kulik AU - A. V. Tur AU - V. V. Yanovskii TI - Interaction of point and dipole vortices in an incompressible liquid JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 459 EP - 480 VL - 162 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/ LA - ru ID - TMF_2010_162_3_a9 ER -
K. N. Kulik; A. V. Tur; V. V. Yanovskii. Interaction of point and dipole vortices in an incompressible liquid. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 459-480. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a9/
[1] G. Lamb, Gidrodinamika, Gostekhizdat, OGIZ, 1947 | MR | Zbl
[2] H. M. Glaz, “Two attempts at modeling two-dimensional turbulence”, Turbulence Seminar, Lecture Notes in Math., 615, eds. P. Bernard, T. Ratiu, Springer, Berlin, 1977, 135–155 | DOI | MR | Zbl
[3] W. Gröbli, Z. Naturforsch. A, 22 (1877), 37–82, 129–168 | Zbl
[4] E. A. Novikov, ZhETF, 68:5 (1975), 1868–1882
[5] G. Kirkhgof, Mekhanika, Lektsii po matematicheskoi fizike, AN SSSR, M., 1962 | Zbl
[6] P. G. Saffman, Vortex Dynamics, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[7] E. A. Novikov, Yu. B. Sedov, ZhETF, 75:3 (1978), 868–876 | MR
[8] S. L. Ziglin, DAN SSSR, 250:6 (1979), 1296–1300 | MR | Zbl
[9] H. Aref, J. Fluid Mech., 143 (1984), 1–21 | DOI | MR | Zbl
[10] P. K. Newton, The $N$-Vortex Problem. Analytical Techniques, Appl. Math. Sci., 145, Springer, New York, 2001 | DOI | MR | Zbl
[11] Y. Kimura, J. Phys. Soc. Japan, 57:5 (1988), 1641–1649 | DOI | MR
[12] W. D. McComb, The Physics of Fluid Turbulence, Oxford Eng. Sci. Ser., 5, Clarendon Press, Oxford, 1991 | MR | Zbl
[13] H. Aref, “Integrable, chaotic, and turbulent vortex motion in two-dimensional flows”, Annual Review of Fluid Mechanics, V. 15, eds. Milton Van Dyke, J. V. Wehausen, John L. Lumley, Annual Rev., Palo Alto, Calif., 1983, 345–389 | DOI | MR | Zbl
[14] R. H. Kraichnan, J. Fluid Mech., 67 (1975), 155–175 | DOI | Zbl
[15] Y. B. Pointin, T. S. Lundgren, Phys. Fluids, 19:10 (1976), 1459–1470 | DOI | Zbl
[16] K. S. Fine, A. C. Cass, W. G. Flynn, C. F. Dryscoll, Phys. Rev. Lett., 75:18 (1995), 3277–3280 | DOI
[17] L. Onsager, Nuovo Cimento (9), 6, Suppl. no. 2 (1949), 279–287 | DOI | MR
[18] E. A. Novikov, ZhETF, 68:5 (1975), 1868–1882
[19] V. V. Yanovsky, A. V. Tur, P. Louarn, D. Le Queau, Physics Plazmas, 8:9 (2001), 4255–4258 | DOI
[20] D. Crowdy, Phys. Fluid, 11:9 (1999), 2556–2564 | DOI | MR | Zbl
[21] A. V. Tur, V. V. Yanovsky, Phys. Fluids, 16:8 (2004), 2877–2885 | DOI | MR
[22] V. V. Yanovsky, A. V. Tur, K. N. Kulik, Phys. Lett. A, 373:29 (2009), 2484–2487 | DOI | Zbl
[23] V. V. Meleshko, M. Yu. Konstantinov, Vortex Dynamics and Chaotic Phenomena, World Sci., Singapore, 1999
[24] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959 | MR | Zbl
[25] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | Zbl
[26] F. Dzh. Seffmen, Dinamika vikhrei, Nauchnyi mir, M., 2000 | MR | Zbl
[27] J. Tavantzis and Lu Ting, Phys. Fluids, 31:6 (1988), 1392–1409 | DOI | MR | Zbl
[28] M. I. Postnikov, Analiticheskaya geometriya, Nauka, M., 1979 | MR | MR | Zbl
[29] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | MR | Zbl