Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 439-458
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a diagram theory for the periodic Anderson model assuming that the Coulomb repulsion of localized $f$ electrons is the main parameter of the theory. the $f$ electrons are strongly correlated and the $c$ conduction electrons are uncorrelated. We determine the $f$-electron correlation function and the $c$-electron mass operator. We formulate the Dyson equation for $c$ electrons and a Dyson-type equation for $f$ electrons and their propagators. We define the skeleton diagrams for the correlation function and the thermodynamic functional. We establish the stationarity of the renormalized thermodynamic potential under variation of the mass operator. the obtained results are applicable to both the normal and the superconducting system states.
Keywords: strongly correlated electron system, Dyson equation, Green's function, periodic Anderson model.
@article{TMF_2010_162_3_a8,
     author = {V. A. Moskalenko and L. A. Dohotaru and R. Citro},
     title = {Diagram theory for the~periodic {Anderson} model: {Stationarity} of the~thermodynamic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {439--458},
     year = {2010},
     volume = {162},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a8/}
}
TY  - JOUR
AU  - V. A. Moskalenko
AU  - L. A. Dohotaru
AU  - R. Citro
TI  - Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 439
EP  - 458
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a8/
LA  - ru
ID  - TMF_2010_162_3_a8
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%A L. A. Dohotaru
%A R. Citro
%T Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 439-458
%V 162
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a8/
%G ru
%F TMF_2010_162_3_a8
V. A. Moskalenko; L. A. Dohotaru; R. Citro. Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 439-458. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a8/

[1] P. W. Anderson, Phys. Rev., 124:1 (1961), 41–53 | DOI | MR

[2] H. Keiter, G. Morandi, Phys. Rep., 109:5 (1984), 277–308 | DOI | MR

[3] G. Czycholl, Phys. Rep., 143:5 (1986), 277–345 | DOI

[4] D. M. Newns, N. Read, Adv. Phys., 36:6 (1987), 799–849 | DOI

[5] H. Shiba, P. Fazekas, Progr. Theoret. Phys. Suppl., 101 (1990), 403–418 | DOI

[6] Canio Noce, Phys. Rep., 431:4 (2006), 173–230 | DOI

[7] P. Fulde, J. Keller, G. Zwicknagl, Solid State Physics: Advances in Research and Applications, Vol. 41, eds. H. Ehrenreich, D. Turnbull, Academic Press, New York, 1988

[8] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Stud. Magnetism, Cambridge Univ. Press, Cambridge, 1997

[9] P. Fulde, Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences, 100, Springer, Berlin, 1991 | DOI

[10] M. I. Vladimir, V. A. Moskalenko, TMF, 82:3 (1990), 428–437 | DOI

[11] S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, TMF, 85:2 (1990), 248–257 | DOI

[12] N. N. Bogolyubov, V. A. Moskalenko, TMF, 86:1 (1991), 16–30 | DOI | MR | Zbl

[13] N. N. Bogolyubov, V. A. Moskalenko, TMF, 92:2 (1992), 182–190 | DOI | MR

[14] V. A. Moskalenko, TMF, 110:2 (1997), 308–322 | DOI | Zbl

[15] V. A. Moskalenko, TMF, 116:3 (1998), 456–473 | DOI | Zbl

[16] V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dokhotaru, R. Chitro, TMF, 155:3 (2008), 474–497 | DOI | MR | Zbl

[17] V. A. Moskalenko, P. Entel, L. A. Dohotaru, D. F. Digor, R. Citro, Diagrammatic theory for Anderson impurity model, Preprint JINR, Dubna, E17-2008-56 | MR

[18] V. A. Moskalenko, P. Entel, L. A. Dokhotaru, R. Chitro, TMF, 159:1 (2009), 162–173 | DOI | MR | Zbl

[19] V. A. Moskalenko, P. Entel, D. F. Digor, Phys. Rev. B, 59:1 (1999), 619–635 | DOI

[20] V. A. Moskalenko, P. Entel, M. Marinaro, N. B. Perkins, C. Holtfort, Phys. Rev. B, 63:24 (2001), 245119 | DOI

[21] J. Hubbard, Proc. Roy. Soc. Ser. A, 276:1365 (1963), 238–257 ; 281:1386 (1964), 401–419 ; 285:1403 (1965), 542–560 | DOI | DOI | DOI | MR

[22] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Dobrosvet, M., 1998 | MR | MR | Zbl

[23] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovykh polei, Nikolai Nikolaevich Bogolyubov. Sobranie nauchnykh trudov v 12 tomakh, T. 10, Nauka, M., 2008 | MR

[24] J. M. Luttinger, J. C. Ward, Phys. Rev. B, 118:5 (1960), 1417–1427 | DOI | MR | Zbl

[25] J. M. Luttinger, Phys. Rev. B, 119:4 (1960), 1153–1163 | DOI | MR | Zbl