Functionals for the~means of observables for one-dimensional infinite-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 422-438
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the existence of means of observables for infinite-particle systems. Using solutions of the Cauchy problems for the BBGKY hierarchy and for its dual, we prove the local existence in time of the mean-value functionals in the cases where either the observables or the states vary in time. We also discuss the problem of the existence of such functionals for several different classes of observables and for
an arbitrary time interval.
Keywords:
infinite-particle system, BBGKY hierarchy, dual BBGKY hierarchy, means of observables.
Mots-clés : cumulant (semi-invariant)
Mots-clés : cumulant (semi-invariant)
@article{TMF_2010_162_3_a7,
author = {T. V. Ryabukha},
title = {Functionals for the~means of observables for one-dimensional infinite-particle systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {422--438},
publisher = {mathdoc},
volume = {162},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/}
}
TY - JOUR AU - T. V. Ryabukha TI - Functionals for the~means of observables for one-dimensional infinite-particle systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 422 EP - 438 VL - 162 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/ LA - ru ID - TMF_2010_162_3_a7 ER -
T. V. Ryabukha. Functionals for the~means of observables for one-dimensional infinite-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 422-438. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/