Functionals for the means of observables for one-dimensional infinite-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 422-438
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the existence of means of observables for infinite-particle systems. Using solutions of the Cauchy problems for the BBGKY hierarchy and for its dual, we prove the local existence in time of the mean-value functionals in the cases where either the observables or the states vary in time. We also discuss the problem of the existence of such functionals for several different classes of observables and for an arbitrary time interval.
Keywords: infinite-particle system, BBGKY hierarchy, dual BBGKY hierarchy, means of observables.
Mots-clés : cumulant (semi-invariant)
@article{TMF_2010_162_3_a7,
     author = {T. V. Ryabukha},
     title = {Functionals for the~means of observables for one-dimensional infinite-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--438},
     year = {2010},
     volume = {162},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/}
}
TY  - JOUR
AU  - T. V. Ryabukha
TI  - Functionals for the means of observables for one-dimensional infinite-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 422
EP  - 438
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/
LA  - ru
ID  - TMF_2010_162_3_a7
ER  - 
%0 Journal Article
%A T. V. Ryabukha
%T Functionals for the means of observables for one-dimensional infinite-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 422-438
%V 162
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/
%G ru
%F TMF_2010_162_3_a7
T. V. Ryabukha. Functionals for the means of observables for one-dimensional infinite-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 422-438. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a7/

[1] C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations, Math. Appl., 420, Kluwer, Dordrecht, 1997 | MR | Zbl

[2] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Appl. Math. Sci., 106, Springer, New York, 1994 | DOI | MR | Zbl

[3] D. Ya. Petrina, Stochastic Dynamics and Boltzmann Hierarchy, Proc. Inst. Math. NASU. Math. Appl., 74, Inst. Math. NASU, Kyiv, 2008 | MR | Zbl

[4] H. Spohn, Large Scale Dynamics of Interacting Particles, Texts Monogr. Phys., Springer, Berlin, 1991 | Zbl

[5] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 | MR | MR | Zbl

[6] D. Ya. Petrina, TMF, 38:2 (1979), 230–250 | DOI | MR

[7] D. Ya. Petrina, V. I. Gerasimenko, UMN, 38:5(233) (1983), 3–58 | DOI | MR | Zbl

[8] V. I. Gerasimenko, D. Ya. Petrina, TMF, 64:1 (1985), 130–149 | DOI | MR

[9] D. Ya. Petrina, V. I. Gerasimenko, UMN, 45:3(273) (1990), 135–182 | DOI | MR | Zbl

[10] V. I. Gerasimenko, T. V. Ryabukha, M. O. Stashenko, J. Phys. A, 37:42 (2004), 9861–9872 | DOI | MR | Zbl

[11] T. V. Ryabukha, SIGMA, 2 (2006), 053 | DOI | MR | Zbl

[12] V. I. Gerasimenko, T. V. Ryabukha, Dopov. NAN Ukr., 3 (2003), 16–22 | MR | Zbl

[13] G. Borgioli, V. Gerasimenko, Riv. Mat. Univ. Parma (7), 4 (2001), 251–267 | MR | Zbl

[14] M. M. Bogolyubov, “Rivnyannya gidrodinamiki v statistichnii mekhanitsi”, AN URSR. Zbirnik prats Institutu matematiki, 10 (1948), 41–59 | MR