The action variable and frequency of a relativistic harmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 408-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present three series representations of the frequency of a relativistic harmonic oscillator. The first two representations use two equivalent forms of the action variable. The third representation involves determining its period by direct integration. The energy dependance of the oscillator frequency is manifestly seen in all three representations. We demonstrate that all three forms yield the same expression for the frequency in the case of the weakly relativistic oscillator and have an identical nonrelativistic limit.
Keywords: Hamilton–Jacobi theory, relativity, simple harmonic oscillator.
Mots-clés : action variable
@article{TMF_2010_162_3_a5,
     author = {M. K. Balasubramanya},
     title = {The~action variable and frequency of a~relativistic harmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--415},
     year = {2010},
     volume = {162},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a5/}
}
TY  - JOUR
AU  - M. K. Balasubramanya
TI  - The action variable and frequency of a relativistic harmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 408
EP  - 415
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a5/
LA  - ru
ID  - TMF_2010_162_3_a5
ER  - 
%0 Journal Article
%A M. K. Balasubramanya
%T The action variable and frequency of a relativistic harmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 408-415
%V 162
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a5/
%G ru
%F TMF_2010_162_3_a5
M. K. Balasubramanya. The action variable and frequency of a relativistic harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 408-415. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a5/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. I. Mekhanika, Fizmatlit, M., 1958 | MR | MR | Zbl

[2] C. E. Delaunay, Sur une nouvelle théorie analytique du mouvement de la lune, Academy Sci., Paris, 1846

[3] R. A. Leacock, M. J. Padgett, Phys. Rev. D, 28:10 (1983), 2491–2502 | DOI | MR

[4] A. Nanayakkara, J. Phys. A, 23:11 (1990), 2055–2065 | DOI | MR

[5] R. S. Bhalla, A. K. Kapoor, P. K. Panigrahi, Amer. J. Phys., 65:12 (1997), 1187–1194 | DOI | MR