@article{TMF_2010_162_3_a4,
author = {I. S. Lobanov and V. Yu. Lotoreichik and I. Yu. Popov},
title = {Lower bound on the~spectrum of the~two-dimensional {Schr\"odinger} operator with a~$\delta$-perturbation on a~curve},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--407},
year = {2010},
volume = {162},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a4/}
}
TY - JOUR AU - I. S. Lobanov AU - V. Yu. Lotoreichik AU - I. Yu. Popov TI - Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 397 EP - 407 VL - 162 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a4/ LA - ru ID - TMF_2010_162_3_a4 ER -
%0 Journal Article %A I. S. Lobanov %A V. Yu. Lotoreichik %A I. Yu. Popov %T Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 397-407 %V 162 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a4/ %G ru %F TMF_2010_162_3_a4
I. S. Lobanov; V. Yu. Lotoreichik; I. Yu. Popov. Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 397-407. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a4/
[1] P. Exner, “Leaky quantum graphs: a review”, Analysis on Graphs and its Applications, Proc. Symposia Pure Math. Ser., 77, eds. P. Exner, J. P. Keating, P. Kuchment, T. Sunada, A. Teplyaev, AMS, Providence, RI, 2008, 523–564 | DOI | MR | Zbl
[2] J. F. Brasche, P. Exner, Yu. A. Kuperin, P. Seba, J. Math. Anal. Appl., 184:1 (1994), 112–139 | DOI | MR | Zbl
[3] P. Exner, T. Ichinose, J. Phys. A, 34:7 (2001), 1439–1450 | DOI | MR | Zbl
[4] M. Abramovits, I. Stegun (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[5] P. Khalmosh, V. Sander, Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | MR | MR | Zbl
[6] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | MR | Zbl
[7] I. Porteous, Geometric Differentiation – for the Intelligence of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl