Time reversal for modified oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 345-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a new completely integrable case of the time-dependent Schrödinger equation in $\mathbb R^n$ with variable coefficients for a modified oscillator that is dual (with respect to time reversal) to a model of the quantum oscillator. We find a second pair of dual Hamiltonians in the momentum representation. The examples considered show that in mathematical physics and quantum mechanics, a change in the time direction may require a total change of the system dynamics to return the system to its original quantum state. We obtain particular solutions of the corresponding nonlinear Schrödinger equations. We also consider a Hamiltonian structure of the classical integrable problem and its quantization.
Keywords: Cauchy initial value problem, Schrödinger equation with variable coefficients, Green's function, propagator, time reversal, hyperspherical harmonic, nonlinear Schrödinger equation.
@article{TMF_2010_162_3_a2,
     author = {R. Cordero-Soto and S. K. Suslov},
     title = {Time reversal for modified oscillators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--380},
     year = {2010},
     volume = {162},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a2/}
}
TY  - JOUR
AU  - R. Cordero-Soto
AU  - S. K. Suslov
TI  - Time reversal for modified oscillators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 345
EP  - 380
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a2/
LA  - ru
ID  - TMF_2010_162_3_a2
ER  - 
%0 Journal Article
%A R. Cordero-Soto
%A S. K. Suslov
%T Time reversal for modified oscillators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 345-380
%V 162
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a2/
%G ru
%F TMF_2010_162_3_a2
R. Cordero-Soto; S. K. Suslov. Time reversal for modified oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 345-380. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a2/

[1] M. Meiler, R. Cordero-Soto, S. K. Suslov, J. Math. Phys., 49:7 (2008), 072102 ; arXiv: 0711.0559 | DOI | MR | Zbl

[2] S. Flügge, Practical Quantum Mechanics, Classics Math., Springer, Berlin, 1999 | MR | Zbl

[3] R. P. Feynman, The Principle of Least Action in Quantum Mechanics, Ph. D. Thesis, Princeton Univ., 1942 ; reprinted in: Feynman's Thesis – A New Approach to Quantum Theory, ed. L. M. Brown, World Sci., Hackensack, NJ, 2005, 1–69 | DOI | MR | Zbl

[4] R. P. Feynman, Rev. Modern Phys., 20:2 (1948), 367–387 ; reprinted in: Feynman's Thesis – A New Approach to Quantum Theory, ed. L. M. Brown, World Sci., Hackensack, NJ, 2005, 71–112 | DOI | MR | DOI | MR | Zbl

[5] R. P. Feynman, Phys. Rev., 76:6 (1949), 749–759 | DOI | MR | Zbl

[6] R. P. Feynman, Phys. Rev., 76:6 (1949), 769–789 | DOI | MR | Zbl

[7] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[8] R. M. Lopez, S. K. Suslov, The Cauchy problem for a forced harmonic oscillator, arXiv: 0707.1902 | MR

[9] L. A. Beauregard, Amer. J. Phys., 34:4 (1966), 324–332 | DOI

[10] K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamentals, Springer, New York, 2004 | MR | Zbl

[11] B. R. Holstein, Amer. J. Phys., 66:7 (1998), 583–589 | DOI | MR | Zbl

[12] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR | Zbl

[13] E. Merzbacher, Quantum Mechanics, John Wiley and Sons, New York, 1961 | MR | Zbl

[14] N. S. Thornber, E. F. Taylor, Amer. J. Phys., 66:11 (1998), 1022–1024 | DOI

[15] G. P. Arrighini, N. L. Durante, Amer. J. Phys., 64:8 (1996), 1036–1041 | DOI

[16] L. S. Brown, Y. Zhang, Amer. J. Phys., 62:9 (1994), 806–808 | DOI | MR | Zbl

[17] B. R. Holstein, Amer. J. Phys., 65:5 (1997), 414–418 | DOI

[18] P. Nardone, Amer. J. Phys., 61:3 (1993), 232–237 | DOI

[19] R. W. Robinett, Amer. J. Phys., 64:6 (1996), 803–808 | DOI

[20] R. Cordero-Soto, R. M. Lopez, E. Suazo, S. K. Suslov, Lett. Math. Phys., 84:2–3 (2008), 159–178 | DOI | MR | Zbl

[21] N. Lanfear, S. K. Suslov, The time-dependent Schrödinger equation, Riccati equation and Airy functions, arXiv: 0903.3608

[22] E. Suazo, S. K. Suslov, An integral form of the nonlinear Schrödinger equation with variable coefficients, arXiv: 0805.0633

[23] E. Suazo, S. K. Suslov, J. M. Vega-Guzman, The Riccati differential equation and a diffusion-type equation, arXiv: 0807.4349 | MR

[24] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia Math. Appl., 23, Addison-Wesley, Reading, MA, 1984 | MR | Zbl

[25] R. Carles, Semi-Classical Analysis for Nonlinear Schrödinger Equations, World Sci., Hackensack, NJ, 2008 | MR | Zbl

[26] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., 10, AMS, Providence, RI, 2003 | MR | Zbl

[27] T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl., 13, Oxford Sci., Clarendon Press, Oxford–New York, 1998 | MR | Zbl

[28] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[29] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | MR | Zbl

[30] I. V. Melnikova, A. Filinkov, Abstract Cauchy problems: Three Approaches, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math., 120, Chapman and Hall/CRC, Boca Raton, London–New York–Washington, 2001 | DOI | MR | Zbl

[31] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math., 106, AMS, Providence, RI, 2006 | DOI | MR | Zbl

[32] V. Banica, L. Vega, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25:4 (2008), 697–711 ; arXiv: 0706.0819 | DOI | MR | Zbl

[33] R. Carles, Ann. Henri Poincaré, 3:4 (2002), 757–772 | DOI | MR | Zbl

[34] R. Carles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 501–542 | DOI | MR | Zbl

[35] R. Carles, SIAM J. Math. Anal., 35:4 (2003), 823–843 | DOI | MR | Zbl

[36] R. Carles, Discrete Contin. Dyn. Syst., 13:2 (2005), 385–398 ; arXiv: math/0405197 | DOI | MR | Zbl

[37] R. Carles, L. Miller, Osaka J. Math., 41:3 (2004), 693–725 | MR | Zbl

[38] R. Carles, Y. Nakamura, Hokkaido Math. J., 33:3 (2004), 719–729 | DOI | MR | Zbl

[39] C. E. Kenig, G. Ponce, L. Vega, Duke Math. J., 106:3 (2001), 617–633 | DOI | MR | Zbl

[40] V. Naibo, A. Stefanov, Math. Ann., 334:2 (2006), 325–338 | DOI | MR | Zbl

[41] V. M. Pérez-García, P. J. Torres, G. D. Montesinos, SIAM J. Appl. Math., 67:4 (2007), 990–1015 | DOI | MR | Zbl

[42] I. Rodnianski, W. Schlag, Invent. Math., 155:3 (2004), 451–513 | DOI | MR | Zbl

[43] O. S. Rozanova, Proc. Amer. Math. Soc., 133:8 (2005), 2347–2358 | DOI | MR | Zbl

[44] W. Schlag, Dispersive estimates for Schroedinger operators: a survay, arXiv: math/0501037 | MR

[45] G. Staffilani, D. Tataru, Comm. Partial Differ. Equ., 27:7–8 (2002), 1337–1372 | DOI | MR | Zbl

[46] D. R. Haaheim, F. M. Stein, Math. Mag., 42 (1969), 233–240 | DOI | MR | Zbl

[47] A. M. Molchanov, Dokl. RAN, 383:2 (2002), 175–178 | MR | Zbl

[48] E. D. Rainville, Intermediate Differential Equations, Macmillan Company, New York, 1964 | MR | Zbl

[49] S. S. Rajah, S. D. Maharaj, J. Math. Phys., 49:1 (2008), 012501 | DOI | MR | Zbl

[50] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1944 | MR | Zbl

[51] W. Magnus, S. Winkler, Hill's Equation, Interscience Tracts Pure Appl. Math., 20, John Wiley and Sons, New York–London–Sydney, 1966 | MR | Zbl

[52] G. E. Andrews, R. A. Askey, R. Roy, Special Functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[53] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR | MR | Zbl

[54] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960 | MR | Zbl

[55] S. K. Suslov, B. Trey, J. Math. Phys., 49:1 (2008), 012104 | DOI | MR | Zbl

[56] R. Cordero-Soto, E. Suazo, S. K. Suslov, J. Phys. Math., 1 (2009), S090603 ; arXiv: 0905.0507 | DOI | Zbl

[57] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | MR | Zbl

[58] J. D. Paliouras, D. S. Meadows, Complex Variables for Scientists and Engineers, Macmillan, New York, 1990 | Zbl

[59] U. Rudin, Osnovy matematicheskogo analiza, Mir, M., 1976 | MR | Zbl

[60] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | MR | Zbl

[61] E. Vigner, Teoriya grupp i ee prilozheniya k kvantomekhanicheskoi teorii atomnykh spektrov, IL, M., 1961 | MR | Zbl

[62] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR | MR | Zbl

[63] Yu. F. Smirnov, K. V. Shitikova, EChAYa, 8 (1977), 847–910 | MR

[64] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR | MR | Zbl

[65] V. Bargmann, Ann. Math., 48:3 (1947), 568–640 | DOI | MR | Zbl

[66] L. Carleson, “Some analytic problems related to statistical mechanics”, Euclidean Harmonic Analysis, Lecture Notes in Math., 779, ed. J. J. Benedetto, Springer, Berlin, 1980, 5–45 | MR | Zbl

[67] P. Sjölin, Duke Math. J., 55:3 (1987), 699–715 | DOI | MR | Zbl

[68] L. Vega, Proc. Amer. Math. Soc., 102:4 (1988), 874–878 | DOI | MR | Zbl

[69] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. I. Mekhanika, Fizmatlit, M., 1958 | MR | MR | Zbl

[70] L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser, C. Castillo-Chávez, Phisica A, 364 (2006), 513–536 | DOI