@article{TMF_2010_162_3_a0,
author = {N. A. Tyurin},
title = {Pseudotoric {Lagrangian} fibrations of toric and nontoric {Fano} varieties},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--333},
year = {2010},
volume = {162},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a0/}
}
N. A. Tyurin. Pseudotoric Lagrangian fibrations of toric and nontoric Fano varieties. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 3, pp. 307-333. http://geodesic.mathdoc.fr/item/TMF_2010_162_3_a0/
[1] M. Audin, Torus Actions on Symplectic Manifolds, Progr. Math., 93, Birkhäuser, Basel, 2004 | MR | Zbl
[2] N. Nekhoroshev, Funkts. analiz i ego pril., 28:2 (1994), 128–129 | DOI | MR | Zbl
[3] S. A. Belyov, N. A. Tyurin, On non toric fibrations on lagrangian tori of toric Fano varieties, MPIM–2009–14, Max Planck Inst. Math., Bonn | MR
[4] T. Delzant, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl
[5] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser., 338, ed. N. Young, Cambridge Univ. Press, Cambridge, 2007, 279–318 | MR | Zbl
[6] A. Ashtekar, T. Schilling, “Geometric formulation of quantum mechanics”, On Einstein's Path, ed. A. Harvey, Springer, New York, 1999, 23–65 | DOI | MR | Zbl
[7] N. A. Tyurin, TMF, 158:1 (2009), 3–22 | DOI | MR | Zbl
[8] D. Auroux, J. Gökova Geom. Topol., 1 (2007), 51–91 | MR | Zbl
[9] S. Belev, Nelineinye kvantovye sistemy, Diplom magistra, OIYaI, Dubna, 2009
[10] S. Belyov, Pseudo toric fibrations of non toric del Pezzo surfaces, in preparation
[11] N. A. Tyurin, TMF, 150:2 (2007), 325–337 | DOI | MR | Zbl
[12] N. Hitchin, “Lectures on Special Lagrangian Submanifolds”, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, AMS/IP Stud. Adv. Math., 23, eds. C. Vafa, S.-T. Yau, AMS, Providence, RI, 2001, 151–182 | DOI | MR | Zbl