Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 285-303
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a one-dimensional diagonally disordered half-infinite chain, we consider the problem of finding the limit value as $t\to\infty$ of the average excitation density $D$ at the edge site of the chain under the condition that the excitation is localized at this site at $t=0$. For a binary disordered chain, we obtain an expression for $D$ that is exact in the small defect concentration limit for an arbitrary defect energy. In this case, the density $D$ depends nonanalytically on the energy. We obtain an expression for $D$ in the case of an arbitrary small diagonal disorder. We also calculate the relative contribution to $D$ from states with a given energy. All the obtained results agree well with the computer simulation data.
Keywords: disordered system, state localization, Anderson criterion.
Mots-clés : random matrix
@article{TMF_2010_162_2_a9,
     author = {G. G. Kozlov},
     title = {Computation of localization degree in the~sense of {the~Anderson} criterion for a~one-dimensional diagonally disordered system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--303},
     year = {2010},
     volume = {162},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a9/}
}
TY  - JOUR
AU  - G. G. Kozlov
TI  - Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 285
EP  - 303
VL  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a9/
LA  - ru
ID  - TMF_2010_162_2_a9
ER  - 
%0 Journal Article
%A G. G. Kozlov
%T Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 285-303
%V 162
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a9/
%G ru
%F TMF_2010_162_2_a9
G. G. Kozlov. Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 285-303. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a9/

[1] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR | MR

[2] P. W. Anderson, Phys. Rev., 109:5 (1958), 1492–1505 | DOI

[3] L. A. Pastur, O spektre sluchainykh yakobievykh matrits i operatora Shredingera na vsei osi so sluchainym potentsialom, Preprint, FTINT AN USSR, Kharkov, 1974; L. A. Pastur, Comm. Math. Phys., 75:2 (1980), 179–196 | DOI | MR | Zbl

[4] I. Ya. Goldsheid, S. A. Molchanov, L. A. Pastur, Funkts. analiz i ego pril., 11:1 (1977), 1–10 | DOI | MR | Zbl

[5] M. V. Belousov, D. E. Pogarev, Pisma v ZhETF, 36:5 (1982), 152–155

[6] M. V. Belousov, B. E. Volf, E. A. Ivanova, Pisma v ZhETF, 38:8 (1983), 376–379 | MR

[7] A. V. Malyshev, V. A. Malyshev, F. Domínguez-Adame, Phys. Rev. B, 70:17 (2004), 172202 ; arXiv: cond-mat/0303092 | DOI

[8] F. J. Dyson, Phys. Rev., 92:6 (1953), 1331–1338 | DOI | MR | Zbl

[9] G. G. Kozlov, Spectrum and eigen functions of the operator $H_U f(x)\equiv f(U-1/x)/x^2$ and strange attractor's density for the mapping $x_{n+1}=1/(U-x_n)$, arXiv:0803.1920