Mots-clés : group
@article{TMF_2010_162_2_a7,
author = {U. A. Rozikov and F. T. Ishankulov},
title = {Description of $p$-harmonic functions on {the~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {266--274},
year = {2010},
volume = {162},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a7/}
}
U. A. Rozikov; F. T. Ishankulov. Description of $p$-harmonic functions on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 266-274. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a7/
[1] N. N. Ganikhodzhaev, S. R. Azizova, DAN RUz., 1990, no. 4, 3–5 | MR | Zbl
[2] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl
[3] U. A. Rozikov, F. T. Ishankulov, Description of periodic $p$-harmonic functions on Cayley tree, Preprint ICTP IC/2008/054 | MR
[4] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl
[5] E. P. Normatov, U. A. Rozikov, Matem. zametki, 79:3 (2006), 434–443 | DOI | MR | Zbl
[6] P. M. Soardi, Potential theory on infinite networks, Lecture Notes in Math., 1590, Springer, Berlin, 1994 | DOI | MR | Zbl
[7] A. Cantón, J. L. Fernández, D. Pestana, J. M. Rodríguez, Potential Anal., 15:3 (2001), 199–244 | DOI | MR | Zbl
[8] H. Kurata, Discrete Appl. Math., 156:1 (2008), 103–109 | DOI | MR | Zbl
[9] I. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monogr., Clarendon Press, New York, 1993 | MR | Zbl
[10] R. Kaufman, J.-M. Wu, Ann. Probab., 28:3 (2000), 1138–1148 | DOI | MR | Zbl