Rotation number quantization effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 254-265

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson transition. For systems in this class, we introduce certain characteristics including a sequence of functions depending on the system parameters. We prove that if this sequence converges at a given point in the parameter space, then its limit is equal to the classical rotation number, and we then call this point a quantization point for the rotation number. We prove that the rotation number of such a system takes only integer values at a quantization point. Quantization areas are thus defined in the parameter space, and the problem of effectively describing them becomes an important part of characterizing the systems under study. We present graphs of the rotation number at quantization points and under conditions when it is not quantized (an example of a half-integer rotation number) and diagrams for quantization areas.
Keywords: dynamical system on a torus, rotation number, Josephson effect.
Mots-clés : quantization
@article{TMF_2010_162_2_a6,
     author = {V. M. Buchstaber and O. V. Karpov and S. I. Tertychnyi},
     title = {Rotation number quantization effect},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--265},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - O. V. Karpov
AU  - S. I. Tertychnyi
TI  - Rotation number quantization effect
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 254
EP  - 265
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/
LA  - ru
ID  - TMF_2010_162_2_a6
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A O. V. Karpov
%A S. I. Tertychnyi
%T Rotation number quantization effect
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 254-265
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/
%G ru
%F TMF_2010_162_2_a6
V. M. Buchstaber; O. V. Karpov; S. I. Tertychnyi. Rotation number quantization effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 254-265. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/