Rotation number quantization effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 254-265
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson transition. For systems in this class, we introduce certain characteristics including a sequence of functions depending on the system parameters. We prove that if this sequence converges at a given point in the parameter space, then its limit is equal to the classical rotation number, and we then call this point a quantization point for the rotation number. We prove that the rotation number of such a system takes only integer values at a quantization point. Quantization areas are thus defined in the parameter space, and the problem of effectively describing them becomes an important part of characterizing the systems under study. We present graphs of the rotation number at quantization points and under conditions when it is not quantized (an example of a half-integer rotation number) and diagrams for quantization areas.
Keywords:
dynamical system on a torus, rotation number, Josephson effect.
Mots-clés : quantization
Mots-clés : quantization
@article{TMF_2010_162_2_a6,
author = {V. M. Buchstaber and O. V. Karpov and S. I. Tertychnyi},
title = {Rotation number quantization effect},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {254--265},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/}
}
TY - JOUR AU - V. M. Buchstaber AU - O. V. Karpov AU - S. I. Tertychnyi TI - Rotation number quantization effect JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 254 EP - 265 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/ LA - ru ID - TMF_2010_162_2_a6 ER -
V. M. Buchstaber; O. V. Karpov; S. I. Tertychnyi. Rotation number quantization effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 254-265. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a6/