Exponentially damped operators for a~harmonic oscillator linearly coupled to a~heat bath
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 243-253
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of the dissipative dynamics of a harmonic oscillator linearly coupled to a heat bath. We demonstrate that in addition to the mean energy, there exists an infinite series of quantities exponentially decreasing in time that are means of polynomials of the system Hamiltonian. We obtain the spectrum of the corresponding relaxation times. We propose a method for representing the time characteristics of the system in terms of operators corresponding to the exponentially damped observables. We obtain a recurrence relation for these operators.
Keywords:
quantum theory of dissipation, Redfield theory, reduced density matrix, correlation function matrix, harmonic oscillator.
@article{TMF_2010_162_2_a5,
author = {I. O. Glebov and V. V. Eremin},
title = {Exponentially damped operators for a~harmonic oscillator linearly coupled to a~heat bath},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {243--253},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a5/}
}
TY - JOUR AU - I. O. Glebov AU - V. V. Eremin TI - Exponentially damped operators for a~harmonic oscillator linearly coupled to a~heat bath JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 243 EP - 253 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a5/ LA - ru ID - TMF_2010_162_2_a5 ER -
%0 Journal Article %A I. O. Glebov %A V. V. Eremin %T Exponentially damped operators for a~harmonic oscillator linearly coupled to a~heat bath %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 243-253 %V 162 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a5/ %G ru %F TMF_2010_162_2_a5
I. O. Glebov; V. V. Eremin. Exponentially damped operators for a~harmonic oscillator linearly coupled to a~heat bath. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a5/