Global solutions of the~Navier--Stokes equations in a~uniformly rotating space
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 196-215
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for the Navier–Stokes system of equations in a three-dimensional space rotating uniformly about the vertical axis with the periodicity condition with respect to the spatial variables. Studying this problem is based on expanding given and sought vector functions in Fourier series in terms of
the eigenfunctions of the curl and Stokes operators. Using the Galerkin method, we reduce the problem to the Cauchy problem for the system of ordinary differential equations, which has a simple explicit form in the basis under consideration. Its linear part is diagonal, which allows writing explicit solutions of the linear Stokes–Sobolev system, to which fluid flows with a nonzero vorticity correspond. Based on the study of the nonlinear interaction of vortical flows, we find an approach that we can use to obtain families of explicit global solutions of the nonlinear problem.
Keywords:
eigenfunction, eigenvalue, curl operator, Stokes operator, Navier–Stokes system of equations, Fourier method, Galerkin method.
@article{TMF_2010_162_2_a2,
author = {R. S. Saks},
title = {Global solutions of {the~Navier--Stokes} equations in a~uniformly rotating space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {196--215},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a2/}
}
TY - JOUR AU - R. S. Saks TI - Global solutions of the~Navier--Stokes equations in a~uniformly rotating space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 196 EP - 215 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a2/ LA - ru ID - TMF_2010_162_2_a2 ER -
R. S. Saks. Global solutions of the~Navier--Stokes equations in a~uniformly rotating space. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 196-215. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a2/