Mots-clés : Liouville-type system
@article{TMF_2010_162_2_a1,
author = {A. V. Kiselev and J. W. van de Leur},
title = {Symmetry algebras of {Lagrangian} {Liouville-type} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--195},
year = {2010},
volume = {162},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a1/}
}
A. V. Kiselev; J. W. van de Leur. Symmetry algebras of Lagrangian Liouville-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a1/
[1] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl
[2] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint Bashkir. otd. AN SSSR, Ufa, 1981
[3] A. V. Zhiber, V. V. Sokolov, UMH, 56:1(337) (2001), 63–106 | DOI | MR | Zbl
[4] A. M. Gureva, A. V. Zhiber, TMF, 138:3 (2004), 401–421 | DOI | MR
[5] A. N. Leznov, M. V. Saveliev, Lett. Math. Phys., 3:6 (1979), 489–494 | DOI | MR | Zbl
[6] A. G. Meshkov, TMF, 63:3 (1985), 323–332 | DOI | MR | Zbl
[7] A. B. Shabat, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl
[8] D. K. Demskoi, S. Ya. Startsev, Fundament. i prikl. matem., 10:1 (2004), 29–37 | DOI | MR | Zbl
[9] A. V. Kiselev, TMF, 144:1 (2005), 83–93 | DOI | MR | Zbl
[10] V. V. Sokolov, S. Ya. Startsev, TMF, 155:2 (2008), 344–355 | DOI | MR | Zbl
[11] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Nov. dostizh., 24, ed. R. V. Gamkrelidze, VINITI, M., 1984, 81–180 | DOI | MR | Zbl
[12] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997 | MR | Zbl
[13] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl
[14] J. Krasil'shchik, A. Verbovetsky, Homological methods in equations of mathematical physics, arXiv: math.DG/9808130
[15] A. V. Kiselev, TMF, 152:1 (2007), 101–117 | DOI | MR | Zbl
[16] A. V. Kiselev, J. W. van de Leur, A geometric derivation of KdV-type hierarchies from root systems, Proc. 4-th Int. Workshop “Group Analysis of Differential Equations and Integrable Systems” (Protaras, Cyprus, 2008), 2009, 87–106 ; arXiv: 0901.4866 | MR
[17] N. H. Ibragimov, A. V. Aksenov, V. A. Baikov, V. A. Chugunov, R. K. Gazizov, A. G. Meshkov, CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2. Applications in Engineering and Physical Sciences, ed. N. H. Ibragimov, Boca Raton, FL, CRC Press, 1995 | MR | Zbl
[18] S. Ya. Startsev, Fundament. i prikl. matem., 12:7 (2006), 251–262 | DOI | MR | Zbl
[19] V. V. Sokolov, UMH, 43:5(263) (1988), 133–163 | DOI | MR | Zbl
[20] S. Ya. Startsev, TMF, 116:3 (1998), 336–348 | DOI | MR | Zbl
[21] B. A. Kupershmidt, G. Wilson, Invent. Math., 62:3 (1980), 403–436 | DOI | MR | Zbl
[22] M. Pavlov, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 173–191 | DOI | MR
[23] A. V. Kiselev, J. W. van de Leur, Involutive distributions of operator-valued evolutionary vector fields. II, arXiv: 0904.1555