Some aspects of applying polynorms in field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 163-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some possibilities of physical applications of pseudonorms of an order higher than two (polynorms) in hypercomplex algebras, primarily in the biquaternion algebra. We can then view several known questions from a new standpoint. In particular, we show that considering the 4-norm in field theory ensures a natural transition from the Maxwell electrodynamics to the nonlinear Born–Infeld electrodynamics. Moreover, the algebraic approach shows that it is natural to add the Skyrme nonlinear term to the meson Lagrangian of nuclear forces. We also find that the only fourth-order additional term can be naturally added to the Skyrme Lagrangian, which might improve the model properties.
Keywords: hypercomplex algebra, nonlinear field theory, Born–Infeld electrodynamics, Skyrme model.
Mots-clés : biquaternion, multiplicative polynorm
@article{TMF_2010_162_2_a0,
     author = {A. A. Eliovich and V. I. Sanyuk},
     title = {Some aspects of applying polynorms in field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--178},
     year = {2010},
     volume = {162},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a0/}
}
TY  - JOUR
AU  - A. A. Eliovich
AU  - V. I. Sanyuk
TI  - Some aspects of applying polynorms in field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 163
EP  - 178
VL  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a0/
LA  - ru
ID  - TMF_2010_162_2_a0
ER  - 
%0 Journal Article
%A A. A. Eliovich
%A V. I. Sanyuk
%T Some aspects of applying polynorms in field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 163-178
%V 162
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a0/
%G ru
%F TMF_2010_162_2_a0
A. A. Eliovich; V. I. Sanyuk. Some aspects of applying polynorms in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/TMF_2010_162_2_a0/

[1] A. V. Berezin, Yu. A. Kurochkin, E. A. Tolkachev, Kvaterniony v relyativistskoi fizike, URSS, M., 2003 | MR

[2] Ya. Lykhmus, E. Paal, L. Sorgesepp, Trudy instituta fiziki AN Estonii, 66 (1990), 8–22 | MR | Zbl

[3] W. K. Clifford, Proc. London Math. Soc., 4 (1873), 381–395 | Zbl

[4] A. P. Kotelnikov, Vintovoe schislenie i nekotorye prilozheniya ego k geometrii i mekhanike, Tipo-Litografiya Imperatorskogo Univ., Kazan, 1895 | Zbl

[5] E. Study, Geometry der Dynamen, Teubner, Leipzig, 1903 | Zbl

[6] F. M. Dimentberg, Vintovoe ischislenie i ego prilozheniya v mekhanike, Nauka, M., 1965 | Zbl

[7] E. Sadberi, Giperkompleksnye chisla v geometrii i fizike, 1:2 (2004), 130–157 | DOI | MR | Zbl

[8] I. L. Kantor, A. S. Solodovnikov, Giperkompleksnye chisla, Nauka, M., 1973 | MR | MR | Zbl

[9] B. A. Rozenfeld, M. P. Zamakhovskii, Geometriya grupp Li, MTsNMO, M., 2003 | MR | Zbl

[10] O. V. Melnikov, V. N. Remeslennikov, V. A. Romankov, L. A. Skornyakov, I. P. Shestakov, Obschaya algebra, T. 1, Spravochnaya matematicheskaya biblioteka, ed. L. A. Skornyakov, Nauka, M., 1990 | MR | Zbl

[11] D. S. Baez, Giperkompleksnye chisla v geometrii i fizike, 3:1(5) (2006), 120–176 ; arXiv: math/0105155 | DOI | MR | Zbl

[12] A. A. Eliovich, Giperkompleksnye chisla v geometrii i fizike, 1:2(2) (2004), 24–50

[13] A. A. Eliovich, Giperkompleksnye chisla v geometrii i fizike, 5:2(10) (2008), 131–159

[14] R. D. Shafer, “O formakh stepeni $n$, dopuskayuschikh kompozitsiyu”, Giperkompleksnye chisla v geometrii i fizike, 1:1 (2004), 140–154 | MR | Zbl

[15] R. D. Schafer, Adv. Math., 4:2 (1970), 127–148 | DOI | MR | Zbl

[16] K. McCrimmon, Trans. Amer. Math. Soc., 127:3 (1967), 527–551 | DOI | MR | Zbl

[17] V. I. Strazhev, L. M. Tomilchik, Elektrodinamika s magnitnym zaryadom, Nauka i tekhnika, Minsk, 1975 | MR

[18] V. G. Makhankov, Yu. P. Rybakov, V. I. Sanyuk, UFN, 162:2 (1992), 1–61 | DOI

[19] Yu. P. Rybakov, V. I. Sanyuk, Mnogomernye solitony, Izd-vo RUDN, M., 2001 | MR

[20] V. A. Andrianov, V. Yu. Novozhilov, “Skalyarnye mezony v modeli Skirma i solitony s barionnym zaryadom”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki, 8, Zap. nauchn. sem. POMI, 169, Nauka, Leningradskoe otdelenie, SPb., 1988, 3–11 | DOI