Temperature jump in degenerate quantum gases in the presence of a Bose–Einstein condensate
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a kinetic equation modeling the behavior of degenerate quantum Bose gases whose collision rate depends on the momentum of elementary excitations. We consider the case where the phonon component is the decisive factor in the elementary excitations. We analytically solve the half-space boundary value problem of the temperature jump at the boundary of the degenerate Bose gas in the presence of a Bose–Einstein condensate.
Keywords: degenerate quantum Bose gas, Bose–Einstein condensate, temperature jump, phonon component.
@article{TMF_2010_162_1_a6,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Temperature jump in degenerate quantum gases in the~presence of {a~Bose{\textendash}Einstein} condensate},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     year = {2010},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a6/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Temperature jump in degenerate quantum gases in the presence of a Bose–Einstein condensate
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 112
EP  - 124
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a6/
LA  - ru
ID  - TMF_2010_162_1_a6
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Temperature jump in degenerate quantum gases in the presence of a Bose–Einstein condensate
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 112-124
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a6/
%G ru
%F TMF_2010_162_1_a6
A. V. Latyshev; A. A. Yushkanov. Temperature jump in degenerate quantum gases in the presence of a Bose–Einstein condensate. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a6/

[1] L. P. Pitaevskii, UFN, 176:4 (2006), 345–364 | DOI

[2] L. Samaj, B. Jancovici, J. Stat. Mech., 02 (2007), P02002 ; arXiv: cond-mat/0701773 | DOI

[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. 9. Statisticheskaya fizika. Chast 2, Nauka, M., 1978 | MR | MR | Zbl

[4] A. M. Prokhorov (red.), Fizicheskii entsiklopedicheskii slovar, Izd-vo BRE, M., 1995 | MR

[5] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, Nauka, M., 1965 | MR | MR

[6] A. V. Latyshev, A. A. Yushkanov, TMF, 134:2 (2003), 310–324 | DOI | MR | Zbl

[7] A. V. Latyshev, A. A. Yushkanov, Matem. modelirovanie, 15:5 (2003), 80–94 | MR | Zbl

[8] A. V. Latyshev, A. A. Yushkanov, TMF, 155:3 (2008), 498–511 | DOI | MR | Zbl

[9] A. V. Latyshev, A. A. Yushkanov, Kineticheskie uravneniya tipa Vilyamsa i ikh tochnye resheniya, Izd-vo MGOU, M., 2004

[10] A. V. Latyshev, A. A. Yushkanov, ZhVMiMF, 49:1 (2009), 137–151 | DOI | MR | Zbl