Hamiltonians associated with the third and fifth Painlevé equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 69-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a Painlevé-type differential equation for the simplest rational Hamiltonian associated with the fifth Painlevé equation in the case $\gamma\ne0$, $\delta=0$. We prove the existence of Hamiltonians of a nonrational type associated with the fifth Painlevé equation in the case $\gamma\ne0$, $\delta=0$. We obtain a generalization of the Garnier and Okamoto formulas for rational Hamiltonians associated with the third Painlevé equation.
Mots-clés : third Painlevé equation, fifth Painlevé equation
Keywords: Hamiltonian.
@article{TMF_2010_162_1_a2,
     author = {V. V. Tsegel'nik},
     title = {Hamiltonians associated with the~third and fifth {Painlev\'e} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--74},
     year = {2010},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - Hamiltonians associated with the third and fifth Painlevé equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 69
EP  - 74
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/
LA  - ru
ID  - TMF_2010_162_1_a2
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T Hamiltonians associated with the third and fifth Painlevé equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 69-74
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/
%G ru
%F TMF_2010_162_1_a2
V. V. Tsegel'nik. Hamiltonians associated with the third and fifth Painlevé equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 69-74. http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/

[1] A. M. Borodin, Izomonodromnye deformatsii i uravneniya Penleve v zadachakh sluchaino-matrichnogo tipa, Preprint POMI No 04-2005

[2] M. Jimbo, T. Miwa, Y. Môry, M. Sato, Physica D, 1:1 (1980), 80–158 | DOI | MR | Zbl

[3] B. M. McCoy, T. T. Wu, C. A. Tracy, J. Math. Phys., 18:5 (1977), 1058–1092 | DOI | MR | Zbl

[4] E. Barouch, B. M. McCoy, T. T. Wu, Phys. Rev. Lett., 31:23 (1973), 1409–1411 | DOI

[5] C. A. Tracy, B. M. McCoy, Phys. Rev. Lett., 31:25 (1973), 1500–1504 | DOI

[6] T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, Phys. Rev. B, 13:1 (1976), 316–374 | DOI | MR

[7] L. Onsager, Phys. Rev., 65:3–4 (1944), 117–149 | DOI | MR | Zbl

[8] M. Cato, M. Dzimbo, T. Miva, Golonomnye kvantovye polya, Mir, M., 1983 | MR

[9] K. Okamoto, Proc. Japan Acad. Ser. A, 56:8 (1980), 367–371 | DOI | MR | Zbl

[10] K. Okamoto, Proc. Japan Acad. Ser. A, 56:6 (1980), 264–268 | DOI | MR | Zbl

[11] J. Malmquist, Ark. Math. Astron. Phys., 17:8 (1923), 1–89 | Zbl

[12] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, BGU, Minsk, 2007

[13] V. V. Tsegelnik, TMF, 151:1 (2007), 54–65 | DOI | MR | Zbl

[14] C. A. Tracy, H. Widom, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl

[15] P. van Moerbeke, “Integrable lattices: random matrices and random permutations”, Random Matrix Models and their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 321–406 | MR | Zbl

[16] R. Garnier, Ann. Sci.Écol Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl

[17] C. M. Cosgrove, G. Scoufis, Stud. Appl. Math., 88:1 (1993), 25–87 | DOI | MR | Zbl

[18] V. V. Golubev, Matem. sb., 28:2 (1912), 323–349 | Zbl

[19] S. Yu. Slavyanov, J. Phys. A, 29:22 (1996), 7329–7335 | DOI | MR | Zbl

[20] S. Yu. Slavyanov, TMF, 123:3 (2000), 395–406 | DOI | MR | Zbl

[21] S. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, S.-Pb., 2002 | MR | Zbl

[22] B. I. Suleimanov, TMF, 156:3 (2008), 364–377 | DOI | MR | Zbl

[23] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé: a Modern Theory of Special Functions, Aspects Math., E16, Vieweg, Braunschweig, Germany, 1991 | MR | Zbl