Hamiltonians associated with the~third and fifth Painlev\'e equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 69-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a Painlevé-type differential equation for the simplest rational Hamiltonian associated with the fifth Painlevé equation in the case $\gamma\ne0$, $\delta=0$. We prove the existence of Hamiltonians of a nonrational type associated with the fifth Painlevé equation in the case $\gamma\ne0$, $\delta=0$. We obtain a generalization of the Garnier and Okamoto formulas for rational Hamiltonians associated with the third Painlevé equation.
Keywords: third Painlevé equation, fifth Painlevé equation, Hamiltonian.
@article{TMF_2010_162_1_a2,
     author = {V. V. Tsegel'nik},
     title = {Hamiltonians associated with the~third and fifth {Painlev\'e} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--74},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - Hamiltonians associated with the~third and fifth Painlev\'e equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 69
EP  - 74
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/
LA  - ru
ID  - TMF_2010_162_1_a2
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T Hamiltonians associated with the~third and fifth Painlev\'e equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 69-74
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/
%G ru
%F TMF_2010_162_1_a2
V. V. Tsegel'nik. Hamiltonians associated with the~third and fifth Painlev\'e equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 69-74. http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a2/