Mots-clés : Liouville equation.
@article{TMF_2010_162_1_a1,
author = {V. de Alfaro and A. T. Filippov},
title = {Multiexponential models of $(1+1)$-dimensional dilaton gravity and {Toda{\textendash}Liouville} integrable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--68},
year = {2010},
volume = {162},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/}
}
TY - JOUR AU - V. de Alfaro AU - A. T. Filippov TI - Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2010 SP - 41 EP - 68 VL - 162 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/ LA - ru ID - TMF_2010_162_1_a1 ER -
%0 Journal Article %A V. de Alfaro %A A. T. Filippov %T Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models %J Teoretičeskaâ i matematičeskaâ fizika %D 2010 %P 41-68 %V 162 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/ %G ru %F TMF_2010_162_1_a1
V. de Alfaro; A. T. Filippov. Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 41-68. http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/
[1] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955–1971 | MR
[2] D. Maison, Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR
[3] P. Thomi, B. Isaak, P. Hájiček, Phys. Rev. D, 30:6 (1984), 1168–1177 | DOI | MR
[4] P. Breitenlohner, D. Maison, Ann. Inst. H. Poincaré, 46:2 (1987), 215–246 | MR | Zbl
[5] P. Breitenlohner, D. Maison, G. Gibbons, Comm. Math. Phys., 120:2 (1988), 295–333 | DOI | MR | Zbl
[6] M. O. Katanaev, J. Math. Phys., 31:4 (1990), 882–891 | DOI | MR | Zbl
[7] T. Banks, M. O'Loughlin, Nucl. Phys. B, 362:3 (1991), 649–664 | DOI | MR
[8] C. G. Callan Jr., S. B. Giddings, J. A. Harvey, A. Strominger, Phys. Rev. D, 45:4 (1992), R1005–R1009 | DOI | MR
[9] J. Gegenberg, G. Kunstatter, D. Louis-Martinez, Phys. Rev. D, 51:4 (1995), 1781–1786 | DOI | MR
[10] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:5 (1995), 661–672 ; 5:3 (1996), 227–250 ; 6:1 (1996), 39–47 | DOI | MR | DOI | MR | DOI | MR | Zbl
[11] H. Nicolai, D. Korotkin, H. Samtleben, “Integrable classical and quantum gravity”, Quantum Fields and Quantum Space Time, NATO Adv. Sci. Inst. Ser. B, 364, eds. G. 't Hooft, A. Jaffe, G. Mack, P. K. Mitter R. Stora, Plenum, New York, 1997, 203–243 ; arXiv: hep-th/9612065 | MR | Zbl
[12] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:1 (1997), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[13] A. Lukas, B. A. Ovrut, D. Waldram, Phys. Lett. B, 393:1–2 (1997), 65–71 | DOI | MR
[14] F. Larsen, F. Wilczek, Phys. Rev. D, 55:8 (1997), 4591–4595 | DOI | MR
[15] H. Lü, S. Mukherji, C. N. Pope, Internat. J. Modern Phys. A, 14:26 (1999), 4121–4142 | DOI | MR | Zbl
[16] A. T. Filippov, EChAYa, 32:7 (2001), 78–83; A. T. Filippov, ЯФ, 65:6 (2002), 997–1001 (in English) | DOI | MR
[17] V. de Alfaro, A. T. Filippov, Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies, arXiv: hep-th/0307269 | MR
[18] V. de Alfaro, A. T. Filippov, Atti Accad. Sci. Torino, 140 (2007), 139–145 ; Integrable low dimensional models for black holes and cosmologies from high dimensional theories, arXiv: hep-th/0504101 | MR
[19] G. A. Alekseev, TMF, 143:2 (2005), 278–304 ; arXiv: gr-qc/0503043 | DOI | MR | Zbl
[20] A. T. Filippov, TMF, 146:1 (2006), 115–131 ; arXiv: hep-th/0505060 | DOI | MR | Zbl
[21] A. T. Filippov, “Many faces of dimensional reducton”, Proceedings of the Workshop “Gribov-75” (May 22–24, 2005, Budapest, Hungary), eds. Yu. L. Dokshitzer, P. Lévai, J. Nyiri, World Sci., Singapore, 2006, 510
[22] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276
[23] V. De Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452 ; arXiv: hep-th/0612258v2 | DOI | MR | Zbl
[24] A. T. Filippov, A new integrable model of $(1+1)$-dimensional dilaton gravity coupled to Toda matter, arXiv: 0801.1312v2
[25] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337:4–5 (2000), 343–492 | DOI | MR
[26] T. Strobl, Gravity in two spacetime dimensions, arXiv: hep-th/0011240
[27] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430 | DOI | MR | Zbl
[28] M. Gasperini, G. Veneziano, Phys. Rep., 373:1–2 (2003), 1–212 | DOI | MR
[29] A. Einshtein, N. Rozen, “O gravitatsionnykh volnakh”, V kn.: A. Einshtein, Sobranie nauchnykh trudov v chetyrekh tomakh, T. II. Raboty po teorii otnositelnosti (1921–1955), Nauka, M., 1966, 438–449 ; N. Rosen, Phys. Z. Zowjetunion, 12 (1937), 366–372 | DOI | MR | Zbl | Zbl
[30] K. Kuhař, Phys. Rev. D, 4 (1971), 986
[31] S. Chandrasekhar, Proc. R. Soc. Lond. Ser A, 408:1835 (1986), 209–232 | DOI | MR | Zbl
[32] F. J. Ernst, Phys. Rev., 167:5 (1968), 1175–1178 | DOI
[33] A. N. Leznov, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl
[34] A. N. Leznov, M. V. Saveliev, Comm. Math. Phys., 74:2 (1980), 111–118 | DOI | MR | Zbl
[35] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl
[36] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | MR | Zbl
[37] A. V. Razumov, M. V. Saveliev, Lie Algebras, Geometry, and Toda-type Systems, Cambridge Lecture Notes in Phys., 8, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[38] G. D. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, On the solutions with singularities of the Liouville equation, Preprint IC/78/126, ICTP, Trieste, 1978
[39] J.-L. Gervais, Internat. J. Modern Phys. A, 6:16 (1991), 2805–2827 | DOI | MR
[40] L. Castellani, A. Ceresole, R. D'Auria, S. Ferrara, P. Fré, M. Trigiante, Nucl. Phys. B, 527:1–2 (1998), 142–170 | DOI | MR | Zbl
[41] K. S. Stelle, “BPS branes in supergravity”, Quantum Field Theory: Perspective and Prospective, NATO Sci. Ser. C, 530, eds. C. DeWitt-Morette, J.-B. Zuber, Kluwer, Dordrecht, 1999, 257–350 ; arXiv: hep-th/9803116 | MR | Zbl
[42] V. D. Ivashchuk, V. N. Melnikov, Class. Quant. Grav., 18:20 (2001), R87–R152 | DOI | MR | Zbl
[43] P. Fré, A. S. Sorin, Nucl. Phys. B, 733:3 (2006), 334–355 | DOI | MR | Zbl
[44] V. de Alfaro, A. T. Filippov, Two-dimensional dilaton gravity and Toda–Liouville integrable models, arXiv: 0811.4501v1