Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 41-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda–Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
Keywords: dilaton gravity, integrable model, Toda equation
Mots-clés : Liouville equation.
@article{TMF_2010_162_1_a1,
     author = {V. de Alfaro and A. T. Filippov},
     title = {Multiexponential models of $(1+1)$-dimensional dilaton gravity and {Toda{\textendash}Liouville} integrable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--68},
     year = {2010},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/}
}
TY  - JOUR
AU  - V. de Alfaro
AU  - A. T. Filippov
TI  - Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2010
SP  - 41
EP  - 68
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/
LA  - ru
ID  - TMF_2010_162_1_a1
ER  - 
%0 Journal Article
%A V. de Alfaro
%A A. T. Filippov
%T Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2010
%P 41-68
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/
%G ru
%F TMF_2010_162_1_a1
V. de Alfaro; A. T. Filippov. Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 162 (2010) no. 1, pp. 41-68. http://geodesic.mathdoc.fr/item/TMF_2010_162_1_a1/

[1] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955–1971 | MR

[2] D. Maison, Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR

[3] P. Thomi, B. Isaak, P. Hájiček, Phys. Rev. D, 30:6 (1984), 1168–1177 | DOI | MR

[4] P. Breitenlohner, D. Maison, Ann. Inst. H. Poincaré, 46:2 (1987), 215–246 | MR | Zbl

[5] P. Breitenlohner, D. Maison, G. Gibbons, Comm. Math. Phys., 120:2 (1988), 295–333 | DOI | MR | Zbl

[6] M. O. Katanaev, J. Math. Phys., 31:4 (1990), 882–891 | DOI | MR | Zbl

[7] T. Banks, M. O'Loughlin, Nucl. Phys. B, 362:3 (1991), 649–664 | DOI | MR

[8] C. G. Callan Jr., S. B. Giddings, J. A. Harvey, A. Strominger, Phys. Rev. D, 45:4 (1992), R1005–R1009 | DOI | MR

[9] J. Gegenberg, G. Kunstatter, D. Louis-Martinez, Phys. Rev. D, 51:4 (1995), 1781–1786 | DOI | MR

[10] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:5 (1995), 661–672 ; 5:3 (1996), 227–250 ; 6:1 (1996), 39–47 | DOI | MR | DOI | MR | DOI | MR | Zbl

[11] H. Nicolai, D. Korotkin, H. Samtleben, “Integrable classical and quantum gravity”, Quantum Fields and Quantum Space Time, NATO Adv. Sci. Inst. Ser. B, 364, eds. G. 't Hooft, A. Jaffe, G. Mack, P. K. Mitter R. Stora, Plenum, New York, 1997, 203–243 ; arXiv: hep-th/9612065 | MR | Zbl

[12] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:1 (1997), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl

[13] A. Lukas, B. A. Ovrut, D. Waldram, Phys. Lett. B, 393:1–2 (1997), 65–71 | DOI | MR

[14] F. Larsen, F. Wilczek, Phys. Rev. D, 55:8 (1997), 4591–4595 | DOI | MR

[15] H. Lü, S. Mukherji, C. N. Pope, Internat. J. Modern Phys. A, 14:26 (1999), 4121–4142 | DOI | MR | Zbl

[16] A. T. Filippov, EChAYa, 32:7 (2001), 78–83; A. T. Filippov, ЯФ, 65:6 (2002), 997–1001 (in English) | DOI | MR

[17] V. de Alfaro, A. T. Filippov, Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies, arXiv: hep-th/0307269 | MR

[18] V. de Alfaro, A. T. Filippov, Atti Accad. Sci. Torino, 140 (2007), 139–145 ; Integrable low dimensional models for black holes and cosmologies from high dimensional theories, arXiv: hep-th/0504101 | MR

[19] G. A. Alekseev, TMF, 143:2 (2005), 278–304 ; arXiv: gr-qc/0503043 | DOI | MR | Zbl

[20] A. T. Filippov, TMF, 146:1 (2006), 115–131 ; arXiv: hep-th/0505060 | DOI | MR | Zbl

[21] A. T. Filippov, “Many faces of dimensional reducton”, Proceedings of the Workshop “Gribov-75” (May 22–24, 2005, Budapest, Hungary), eds. Yu. L. Dokshitzer, P. Lévai, J. Nyiri, World Sci., Singapore, 2006, 510

[22] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276

[23] V. De Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452 ; arXiv: hep-th/0612258v2 | DOI | MR | Zbl

[24] A. T. Filippov, A new integrable model of $(1+1)$-dimensional dilaton gravity coupled to Toda matter, arXiv: 0801.1312v2

[25] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337:4–5 (2000), 343–492 | DOI | MR

[26] T. Strobl, Gravity in two spacetime dimensions, arXiv: hep-th/0011240

[27] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430 | DOI | MR | Zbl

[28] M. Gasperini, G. Veneziano, Phys. Rep., 373:1–2 (2003), 1–212 | DOI | MR

[29] A. Einshtein, N. Rozen, “O gravitatsionnykh volnakh”, V kn.: A. Einshtein, Sobranie nauchnykh trudov v chetyrekh tomakh, T. II. Raboty po teorii otnositelnosti (1921–1955), Nauka, M., 1966, 438–449 ; N. Rosen, Phys. Z. Zowjetunion, 12 (1937), 366–372 | DOI | MR | Zbl | Zbl

[30] K. Kuhař, Phys. Rev. D, 4 (1971), 986

[31] S. Chandrasekhar, Proc. R. Soc. Lond. Ser A, 408:1835 (1986), 209–232 | DOI | MR | Zbl

[32] F. J. Ernst, Phys. Rev., 167:5 (1968), 1175–1178 | DOI

[33] A. N. Leznov, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl

[34] A. N. Leznov, M. V. Saveliev, Comm. Math. Phys., 74:2 (1980), 111–118 | DOI | MR | Zbl

[35] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl

[36] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | MR | Zbl

[37] A. V. Razumov, M. V. Saveliev, Lie Algebras, Geometry, and Toda-type Systems, Cambridge Lecture Notes in Phys., 8, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[38] G. D. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, On the solutions with singularities of the Liouville equation, Preprint IC/78/126, ICTP, Trieste, 1978

[39] J.-L. Gervais, Internat. J. Modern Phys. A, 6:16 (1991), 2805–2827 | DOI | MR

[40] L. Castellani, A. Ceresole, R. D'Auria, S. Ferrara, P. Fré, M. Trigiante, Nucl. Phys. B, 527:1–2 (1998), 142–170 | DOI | MR | Zbl

[41] K. S. Stelle, “BPS branes in supergravity”, Quantum Field Theory: Perspective and Prospective, NATO Sci. Ser. C, 530, eds. C. DeWitt-Morette, J.-B. Zuber, Kluwer, Dordrecht, 1999, 257–350 ; arXiv: hep-th/9803116 | MR | Zbl

[42] V. D. Ivashchuk, V. N. Melnikov, Class. Quant. Grav., 18:20 (2001), R87–R152 | DOI | MR | Zbl

[43] P. Fré, A. S. Sorin, Nucl. Phys. B, 733:3 (2006), 334–355 | DOI | MR | Zbl

[44] V. de Alfaro, A. T. Filippov, Two-dimensional dilaton gravity and Toda–Liouville integrable models, arXiv: 0811.4501v1