,Fermi–Dirac and Bose–Einstein functions of negative integer order
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 400-405
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find simple explicit closed-form formulas for the Fermi–Dirac function $\mathscr{F}_{-n}(z)$ and Bose–Einstein function $\mathscr{B}_{-n}(z)$ for arbitrary $n\in\mathbb{N}$. The obtained formulas involve the higher tangent numbers defined by Carlitz and Scoville. We present some examples and direct consequences of applying the main results.
Keywords: Fermi–Dirac function, Bose–Einstein function, Fermi–Dirac integral, Bose–Einstein integral, higher-order tangent number, order-$k$ tangent number.
@article{TMF_2009_161_3_a7,
     author = {D. Cvijovi\'c},
     title = {,Fermi{\textendash}Dirac and {Bose{\textendash}Einstein} functions of negative integer order},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {400--405},
     year = {2009},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a7/}
}
TY  - JOUR
AU  - D. Cvijović
TI  - ,Fermi–Dirac and Bose–Einstein functions of negative integer order
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 400
EP  - 405
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a7/
LA  - ru
ID  - TMF_2009_161_3_a7
ER  - 
%0 Journal Article
%A D. Cvijović
%T ,Fermi–Dirac and Bose–Einstein functions of negative integer order
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 400-405
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a7/
%G ru
%F TMF_2009_161_3_a7
D. Cvijović. ,Fermi–Dirac and Bose–Einstein functions of negative integer order. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 400-405. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a7/

[1] R. B. Dingle, Appl. Sci. Res. B, 6 (1957), 225–239 | DOI | MR | Zbl

[2] R. B. Dingle, Appl. Sci. Res. B, 6 (1957), 240–244 | DOI | MR | Zbl

[3] J. McDougall, E. C. Stoner, Philos. Trans. Roy. Soc. Lond. Ser. A, 237 (1938), 67–104 | DOI | Zbl

[4] E. C. Stoner, Philos. Magazine B, 28:188 (1939), 257–286 | DOI

[5] P. Rhodes, Proc. Roy. Soc. Lond. Ser. A, 204:1078 (1950), 396–405 | DOI | MR | Zbl

[6] M. L. Glasser, J. Math. Phys., 5:8 (1964), 1150–1152 | DOI | MR | Zbl

[7] W. J. Cody, H. C. Thacher, Jr., Math. Comput., 21:97 (1967), 30–40 | DOI | Zbl

[8] R. J. Swenson, Phys. Lett. A, 26:12 (1968), 632–633 | DOI

[9] A. Wesserman, Phys. Lett. A, 27:6 (1968), 360–361 | DOI

[10] S. D. Jog, Phys. Lett. A, 72:4–5 (1979), 303–305 | DOI | MR

[11] J. S. Blakemore, Solid-State Electron., 25:11 (1982), 1067–1076 | DOI

[12] F. J. Fernández Velicia, Phys. Rev. A, 30:3 (1984), 1194–1207 | DOI

[13] P. Van Halen, D. L. Pulfrey, J. Appl. Phys., 57:12 (1985), 5271–5274 | DOI

[14] F. J. Fernández Velicia, Phys. Rev. A, 34:5 (1986), 4387–4395 | DOI | MR

[15] I. J. Ohsugi, T. Kojima, I. Nishida, J. Appl. Phys., 63:10 (1988), 5179–5181 | DOI

[16] J. E. Robinson, Phys. Rev., 83:3 (1951), 678–679 | DOI | MR | Zbl

[17] J. Clunie, Proc. Phys. Soc. A, 67:7 (1954), 632–636 | DOI | MR | Zbl

[18] E. W. Ng, C. J. Devine, R. F. Tooper, Math. Comput., 23:107 (1969), 639–643 | DOI | MR | Zbl

[19] L. Carlitz, R. Scoville, Duke Math. J., 39:3 (1972), 413–429 | DOI | MR | Zbl

[20] L. Carlitz, SIAM Rev., 17:2 (1975), 298–322 | DOI | MR | Zbl

[21] M. E. Hoffman, Amer. Math. Monthly, 102:1 (1995), 23–30 | DOI | MR | Zbl

[22] E. D. Rainville, Special Functions, Macmillan, New York, 1960 | MR | Zbl