The~WDVV symmetries in two-primary models
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 367-381

Voir la notice de l'article provenant de la source Math-Net.Ru

From the bi-Hamiltonian standpoint, we investigate symmetries of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations proposed by Dubrovin. These symmetries can be viewed as canonical Miura transformations between genus-zero bi-Hamiltonian systems of hydrodynamic type. In particular, we show that the moduli space of two-primary models under symmetries of the WDVV equations can be parameterized by the polytropic exponent $h$. We discuss the transformation properties of the free energy at the genus-one level.
Keywords: Frobenius manifold, WDVV equation, bi-Hamiltonian structure, primary free energy, dToda hierarchy, Benney hierarchy, dDym hierarchy, polytropic gas dynamics.
@article{TMF_2009_161_3_a5,
     author = {Yu-Tung Chen and Niann-Chern Lee and Ming-Hsien Tu},
     title = {The~WDVV symmetries in two-primary models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--381},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/}
}
TY  - JOUR
AU  - Yu-Tung Chen
AU  - Niann-Chern Lee
AU  - Ming-Hsien Tu
TI  - The~WDVV symmetries in two-primary models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 367
EP  - 381
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/
LA  - ru
ID  - TMF_2009_161_3_a5
ER  - 
%0 Journal Article
%A Yu-Tung Chen
%A Niann-Chern Lee
%A Ming-Hsien Tu
%T The~WDVV symmetries in two-primary models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 367-381
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/
%G ru
%F TMF_2009_161_3_a5
Yu-Tung Chen; Niann-Chern Lee; Ming-Hsien Tu. The~WDVV symmetries in two-primary models. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 367-381. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/