@article{TMF_2009_161_3_a5,
author = {Yu-Tung Chen and Niann-Chern Lee and Ming-Hsien Tu},
title = {The~WDVV symmetries in two-primary models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {367--381},
year = {2009},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/}
}
Yu-Tung Chen; Niann-Chern Lee; Ming-Hsien Tu. The WDVV symmetries in two-primary models. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 367-381. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/
[1] I. M. Krichever, Comm. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl
[2] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Group, Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Berlin, Springer, 1996, 120–348 | DOI | MR | Zbl
[3] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, Amer. Math. Soc. Colloq. Publ., 47, AMS, Providence, RI, 1999 | MR | Zbl
[4] N. Hitchin, “Frobenius manifolds”, With notes by D. Calderbank, Gauge Theory and Symplectic Geometry, NATO Adv. Sci. Inst. Ser. C, 488, eds. J. Hurtubise, F. Lalonde, G. Sabidussi, Kluwer, Dordrecht, 1997, 69–112 | MR | Zbl
[5] C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Math., 151, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[6] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Providence, RI, AMS, 2003 | MR | Zbl
[7] I. A. B. Strachan, J. Math. Phys., 40:10 (1999), 5058–5079 | DOI | MR | Zbl
[8] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR
[9] R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR
[10] B. Dubrovin, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR
[11] G. B. Whitham, Linear and Nonlinear Waves, Pure Appl. Math., Wiley, New York–London–Sydney, 1974 | MR | Zbl
[12] P. J. Olver, Y. Nutku, J. Math. Phys., 29:7 (1988), 1610–1619 | DOI | MR | Zbl
[13] Y.-T. Chen, M.-H. Tu, Lett. Math. Phys., 63:2 (2003), 125–139 | DOI | MR | Zbl
[14] J.-H. Chang, M.-H. Tu, J. Phys. A, 34:2 (2001), 251–272 | DOI | MR | Zbl
[15] T. Eguchi, S.-K. Yang, Modern Phys. Lett. A, 9:31 (1994), 2893–2902 | DOI | MR | Zbl
[16] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160
[17] B. Dubrovin, “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, eds. V. M. Buchstaber, I. M. Krichever, Providence, RI, AMS, 2004, 75–132 | MR | Zbl
[18] A. Riley, I. A. B. Strachan, J. Nonlinear Math. Phys., 14:1 (2007), 82–94 | DOI | MR | Zbl
[19] K. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR | Zbl
[20] S. Aoyama, Y. Kodama, Comm. Math. Phys., 182:1 (1996), 185–219 | DOI | MR | Zbl
[21] L.-C. Li, Comm. Math. Phys., 203:3 (1999), 573–592 | DOI | MR | Zbl
[22] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 279:2 (1984), 294–297 | MR | Zbl
[23] B. Dubrovin, Y. Zhang, Comm. Math. Phys., 198:2 (1998), 311–361 | DOI | MR | Zbl
[24] R. Dijkgraaf, “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory, NATO Adv. Sci. Inst. Ser. B, 295, eds. J. Fröhlich, G.'t Hooft, A. Jaffe, G. Mack, P. K. Mitter, R. Stora, Plenum, New York, 1992, 95–158 | MR | Zbl
[25] Y.-T. Chen, N.-C. Lee, M.-H. Tu, J. Math. Phys., 48:7 (2007), 072702 | DOI | MR | Zbl
[26] E. Getzler, J. Amer. Math. Soc., 10:4 (1997), 973–998 | DOI | MR | Zbl
[27] I. A. B. Strachan, Int. Math. Res. Not., 2003:19 (2003), 1035–1051 | DOI | MR | Zbl
[28] M. V. Pavlov, TMF, 150:2 (2007), 263–285 | DOI | MR | Zbl