The~WDVV symmetries in two-primary models
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 367-381
Voir la notice de l'article provenant de la source Math-Net.Ru
From the bi-Hamiltonian standpoint, we investigate symmetries of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations proposed by Dubrovin. These symmetries can be viewed as canonical Miura transformations between genus-zero bi-Hamiltonian systems of hydrodynamic type. In particular, we show that the moduli space of two-primary models under symmetries of the WDVV equations can be parameterized by the polytropic exponent $h$. We discuss the transformation properties of the free energy at the genus-one level.
Keywords:
Frobenius manifold, WDVV equation, bi-Hamiltonian structure, primary free energy, dToda hierarchy, Benney hierarchy, dDym hierarchy, polytropic gas dynamics.
@article{TMF_2009_161_3_a5,
author = {Yu-Tung Chen and Niann-Chern Lee and Ming-Hsien Tu},
title = {The~WDVV symmetries in two-primary models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {367--381},
publisher = {mathdoc},
volume = {161},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/}
}
TY - JOUR AU - Yu-Tung Chen AU - Niann-Chern Lee AU - Ming-Hsien Tu TI - The~WDVV symmetries in two-primary models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 367 EP - 381 VL - 161 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/ LA - ru ID - TMF_2009_161_3_a5 ER -
Yu-Tung Chen; Niann-Chern Lee; Ming-Hsien Tu. The~WDVV symmetries in two-primary models. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 367-381. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a5/