$\tau$-function solution of the sixth Painlevé transcendent
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 346-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We represent and analyze the general solution of the sixth Painlevé transcendent $\mathcal P_6$ in the Picard–Hitchin–Okamoto class in the Painlevé form as the logarithmic derivative of the ratio of $\tau$-functions. We express these functions explicitly in terms of the elliptic Legendre integrals and Jacobi theta functions, for which we write the general differentiation rules. We also establish a relation between the $\mathcal P_6$ equation and the uniformization of algebraic curves and present examples.
Mots-clés : Painlevé VI equation
Keywords: elliptic function, theta function, uniformization, automorphic function.
@article{TMF_2009_161_3_a4,
     author = {Yu. V. Brezhnev},
     title = {A~$\tau$-function solution of the~sixth {Painlev\'e} transcendent},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {346--366},
     year = {2009},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a4/}
}
TY  - JOUR
AU  - Yu. V. Brezhnev
TI  - A $\tau$-function solution of the sixth Painlevé transcendent
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 346
EP  - 366
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a4/
LA  - ru
ID  - TMF_2009_161_3_a4
ER  - 
%0 Journal Article
%A Yu. V. Brezhnev
%T A $\tau$-function solution of the sixth Painlevé transcendent
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 346-366
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a4/
%G ru
%F TMF_2009_161_3_a4
Yu. V. Brezhnev. A $\tau$-function solution of the sixth Painlevé transcendent. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 346-366. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a4/

[1] R. Fuchs, C. R. Acad. Sci. Paris, 141 (1906), 555–558 | MR | Zbl

[2] M. V. Babich, D. A. Korotkin, Lett. Math. Phys., 46:4 (1998), 323–337 | DOI | MR | Zbl

[3] K. P. Tod, Phys. Lett. A, 190:3–4 (1994), 221–224 | DOI | MR | Zbl

[4] N. Hitchin, J. Differ. Geom., 42:1 (1995), 30–112 | DOI | MR | Zbl

[5] P. Painlevé, C. R. Acad. Sci., 143 (1907), 1111–1117 | Zbl

[6] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[7] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1967 | MR | MR | Zbl

[8] K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der Elliptischen Functionen, Bearbeitet und herausgegeben von H. A. Schwarz, Kaestner, Göttingen, 1885 | MR | Zbl

[9] M. V. Babich, UMN, 64:1(385) (2009), 51–134 | DOI | MR | Zbl

[10] W. K. Schief, Phys. Lett. A, 267:4 (2000), 265–275 | DOI | MR | Zbl

[11] F. Nijhoff, A. Hone, N. Joshi, Phys. Lett. A, 267:2–3 (2000), 147–156 | DOI | MR | Zbl

[12] Yu. V. Brezhnev, Mosc. Math. J., 8:2 (2008), 233–271 | MR | Zbl

[13] D. Guzzetti, Comm. Pure Appl. Math., 55:10 (2002), 1280–1363 | DOI | MR | Zbl

[14] R. Conte (ed.), The Painlevé Property. One Century Later, CRM Ser. Math. Phys., Springer, New York, 1999 | MR | Zbl

[15] V. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, de Gruyter Stud. Math., 28, Walter de Gruyter, Berlin, 2002 | DOI | MR | Zbl

[16] K. Okamoto, Proc. Japan Acad. Ser. A, 56:8 (1980), 367–371 | DOI | MR | Zbl

[17] A. V. Kitaev, D. A. Korotkin, Int. Math. Res. Not., 17 (1998), 877–905 | DOI | MR | Zbl

[18] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects Math., E16, Friedr. Vieweg and Sohn, Braunschweig, 1991 | DOI | MR | Zbl

[19] E. Picard, J. de Math. (4), 5 (1889), 135–319 | Zbl

[20] P. Painlevé, ØE uvres de Paul Painlevé. T. III. Equations differentielles du second ordre. Mécanique. Quelques documents, Éditions du Centre National de la Recherche Scientifique, Paris, 1975 | MR | Zbl

[21] K. Okamoto, Ann. Mat. Pura Appl. (4), 146:1 (1986), 337–381 | DOI | MR | Zbl

[22] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Ch. 2, Fizmatlit, M., 1963 | MR | Zbl

[23] M. Mazzocco, Math. Ann., 321:1 (2001), 157–195 | DOI | MR | Zbl

[24] R. Fuchs, Math. Ann., 70:4 (1911), 525–549 | DOI | MR | Zbl

[25] H. A. Schwarz, Gesammelte Mathematische Abhandlundgen, Springer, Berlin, 1890 | MR | Zbl

[26] Yu. V. Brezhnev, On functions of Jacobi–Weierstrass (I) and equation of Painleve, arXiv: 0808.3486