Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 459-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find that constructing the two mutually-conjugate tripartite entangled state representations naturally leads to the entangled Fourier transformation. We then derive the convolution theorem for the three-dimensional entangled fractional Fourier transformation in the context of quantum mechanics.
Keywords: three-dimensional entangled fractional Fourier transformation, convolution theorem, tripartite entangled state representation.
@article{TMF_2009_161_3_a10,
     author = {Shu-guang Liu and Hong-yi Fan},
     title = {Convolution theorem for the~three-dimensional entangled fractional {Fourier} transformation deduced from the~tripartite entangled state representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {459--468},
     year = {2009},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/}
}
TY  - JOUR
AU  - Shu-guang Liu
AU  - Hong-yi Fan
TI  - Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 459
EP  - 468
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/
LA  - ru
ID  - TMF_2009_161_3_a10
ER  - 
%0 Journal Article
%A Shu-guang Liu
%A Hong-yi Fan
%T Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 459-468
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/
%G ru
%F TMF_2009_161_3_a10
Shu-guang Liu; Hong-yi Fan. Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 459-468. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/

[1] A. Einshtein, B. Podolskii, N. Rozen, UFN, 16:4 (1936), 440–446 | DOI | Zbl

[2] Hong-yi Fan, J. R. Klauder, Phys. Rev. A, 49:2 (1994), 704–707 | DOI | Zbl

[3] Hong-yi Fan, Liang Fu, Internat. J. Theoret. Phys., 44:4 (2005), 529–538 | DOI | MR | Zbl

[4] Hong-yi Fan, Nian-quan Jiang, J. Opt. B Quantum Semiclass. Opt., 5:3 (2003), 283–288 | DOI | MR

[5] Hong-yi Fan, Nian-quan Jiang, Chinese Phys. Lett., 19:10 (2002), 1403–1406 | DOI

[6] V. Namias, J. Inst. Math. Appl., 25:3 (1980), 241–265 | DOI | MR | Zbl

[7] V. P. Bykov, O. O. Silichev, Lazernye rezonatory, Fizmatlit, M., 2004

[8] A. C. McBride, F. H. Kerr, IMA J. Appl. Math., 39:2 (1987), 159–175 | DOI | MR | Zbl

[9] D. Mendlovic, H. M. Ozaktas, J. Opt. Soc. Amer. A, 10:9 (1993), 1875–1881 | DOI

[10] D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, Appl. Opt., 33:26 (1994), 6188–6193 | DOI

[11] H. M. Ozaktas, D. Mendlovic, J. Opt. Soc. Amer. A, 10:12 (1993), 2522–2531 | DOI | MR

[12] A. W. Lohmann, J. Opt. Soc. Amer. A, 10:10 (1993), 2181–2186 | DOI

[13] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968

[14] L. B. Almeida, IEEE Signal Processing Lett., 4:1 (1997), 15–17 | DOI

[15] A. I. Zayed, IEEE Signal Processing Lett., 5:4 (1998), 101–103 | DOI

[16] Hong-yi Fan, Yue Fan, Commun. Theor. Phys. (Beijing), 39:4 (2003), 417–420 | DOI | MR | Zbl

[17] F. T. Arrechi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A, 6:6 (1972), 2211–2237 | DOI