@article{TMF_2009_161_3_a10,
author = {Shu-guang Liu and Hong-yi Fan},
title = {Convolution theorem for the~three-dimensional entangled fractional {Fourier} transformation deduced from the~tripartite entangled state representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {459--468},
year = {2009},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/}
}
TY - JOUR AU - Shu-guang Liu AU - Hong-yi Fan TI - Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 459 EP - 468 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/ LA - ru ID - TMF_2009_161_3_a10 ER -
%0 Journal Article %A Shu-guang Liu %A Hong-yi Fan %T Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 459-468 %V 161 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/ %G ru %F TMF_2009_161_3_a10
Shu-guang Liu; Hong-yi Fan. Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 459-468. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a10/
[1] A. Einshtein, B. Podolskii, N. Rozen, UFN, 16:4 (1936), 440–446 | DOI | Zbl
[2] Hong-yi Fan, J. R. Klauder, Phys. Rev. A, 49:2 (1994), 704–707 | DOI | Zbl
[3] Hong-yi Fan, Liang Fu, Internat. J. Theoret. Phys., 44:4 (2005), 529–538 | DOI | MR | Zbl
[4] Hong-yi Fan, Nian-quan Jiang, J. Opt. B Quantum Semiclass. Opt., 5:3 (2003), 283–288 | DOI | MR
[5] Hong-yi Fan, Nian-quan Jiang, Chinese Phys. Lett., 19:10 (2002), 1403–1406 | DOI
[6] V. Namias, J. Inst. Math. Appl., 25:3 (1980), 241–265 | DOI | MR | Zbl
[7] V. P. Bykov, O. O. Silichev, Lazernye rezonatory, Fizmatlit, M., 2004
[8] A. C. McBride, F. H. Kerr, IMA J. Appl. Math., 39:2 (1987), 159–175 | DOI | MR | Zbl
[9] D. Mendlovic, H. M. Ozaktas, J. Opt. Soc. Amer. A, 10:9 (1993), 1875–1881 | DOI
[10] D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, Appl. Opt., 33:26 (1994), 6188–6193 | DOI
[11] H. M. Ozaktas, D. Mendlovic, J. Opt. Soc. Amer. A, 10:12 (1993), 2522–2531 | DOI | MR
[12] A. W. Lohmann, J. Opt. Soc. Amer. A, 10:10 (1993), 2181–2186 | DOI
[13] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968
[14] L. B. Almeida, IEEE Signal Processing Lett., 4:1 (1997), 15–17 | DOI
[15] A. I. Zayed, IEEE Signal Processing Lett., 5:4 (1998), 101–103 | DOI
[16] Hong-yi Fan, Yue Fan, Commun. Theor. Phys. (Beijing), 39:4 (2003), 417–420 | DOI | MR | Zbl
[17] F. T. Arrechi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A, 6:6 (1972), 2211–2237 | DOI