The structure of polynomial conservation laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 318-326
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider periodic closures of integrable chains. We establish a compact formula for the generating function of the conservation laws. This generating function is common to classical integrable chains related to various second-order spectral problems. We study the stabilization problem for the form of the conservation laws in the limit as the closure period tends to infinity.
Keywords:
discrete equation, conservation law
Mots-clés : chain.
Mots-clés : chain.
@article{TMF_2009_161_3_a1,
author = {R. N. Garifullin and A. B. Shabat},
title = {The~structure of polynomial conservation laws},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {318--326},
year = {2009},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a1/}
}
R. N. Garifullin; A. B. Shabat. The structure of polynomial conservation laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 318-326. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a1/
[1] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR | MR | Zbl
[2] R. I. Yamilov, UMN, 38:6(234) (1983), 155–156
[3] Yu. Mozer, Integriruemye gamiltonovy sistemy i spektralnaya teoriya, RKhD, Izhevsk, 1999
[4] V. E. Adler, V. G. Marikhin, A. B. Shabat, TMF, 129:2 (2001), 163–183 | DOI | MR | Zbl
[5] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl
[6] V. E. Adler, Funkts. analiz i ego pril., 27:2 (1993), 79–82 | DOI | MR | Zbl