The symmetry of the partition function of some square ice models
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 309-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the partition function $Z(N;x_1,\dots,x_N,y_1,\dots,y_N)$ of the square ice model with domain wall boundary conditions. We give a simple proof that $Z$ is symmetric with respect to all its variables when the global parameter $a$ of the model is set to the special value $a=e^{i\pi/3}$. Our proof does not use any determinant interpretation of $Z$ and can be adapted to other situations (e.g., to some symmetric ice models).
Keywords: alternating-sign matrix, square ice model, partition function, Yang–Baxter equation.
@article{TMF_2009_161_3_a0,
     author = {J.-Ch. Aval},
     title = {The~symmetry of the~partition function of some square ice models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--317},
     year = {2009},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/}
}
TY  - JOUR
AU  - J.-Ch. Aval
TI  - The symmetry of the partition function of some square ice models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 309
EP  - 317
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/
LA  - ru
ID  - TMF_2009_161_3_a0
ER  - 
%0 Journal Article
%A J.-Ch. Aval
%T The symmetry of the partition function of some square ice models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 309-317
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/
%G ru
%F TMF_2009_161_3_a0
J.-Ch. Aval. The symmetry of the partition function of some square ice models. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 309-317. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/

[1] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34:19 (2001), L265–L270 | DOI | MR | Zbl

[2] A. V. Razumov, Y. G. Stroganov, J. Phys. A, 34:14 (2001), 3185–3190 | DOI | MR | Zbl

[3] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34:26 (2001), 5335–5340 | DOI | MR | Zbl

[4] A. V. Razumov, Yu. G. Stroganov, TMF, 138:3 (2004), 395–400 | DOI | MR | Zbl

[5] A. V. Razumov, Yu. G. Stroganov, TMF, 142:2 (2005), 284–292 | DOI | MR | Zbl

[6] P. Di Francesco, P. Zinn-Justin, Electron. J. Combin., 12 (2005), R6 | MR | Zbl

[7] W. Mills, D. Robbins, H. Rumsey Jr., J. Combin. Theory Ser. A, 34:3 (1983), 340–359 | DOI | MR | Zbl

[8] D. Zeilberger, Electron. J. Combin., 3:2 (1996), R13 | MR | Zbl

[9] G. Kuperberg, Internat. Math. Res. Notices, 1996:3 (1996), 139–150 | DOI | MR | Zbl

[10] V. E. Korepin, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[11] A. G. Izergin, DAN SSSR, 297:2 (1987), 331–333 | MR | Zbl

[12] G. Kuperberg, Ann. Math., 156:3 (2002), 835–866 | DOI | MR | Zbl

[13] D. Robbins, Symmetry classes of alternating sign matrices, arXiv: math.CO/0008045

[14] A. V. Razumov, Yu. G. Stroganov, TMF, 149:3 (2006), 395–408 | DOI | MR | Zbl

[15] J.-C. Aval, P. Duchon, Enumeration of alternating sign matrices of even rotation (quasi-)invariant under a quarter-turn rotation, arXiv: 0906.3445 | MR

[16] Yu. G. Stroganov, TMF, 146:1 (2006), 65–76 | DOI | MR | Zbl

[17] A. V. Razumov, Yu. G. Stroganov, TMF, 161:1 (2009), 3–20 ; arXiv: 0805.0669 | DOI | MR | Zbl

[18] A. V. Razumov, Yu. G. Stroganov, TMF, 161:2 (2009), 154–163 ; arXiv: 0812.2654 | DOI | MR | Zbl

[19] A. V. Razumov, Yu. G. Stroganov, TMF, 148:3 (2006), 357–386 | DOI | MR | Zbl