The~symmetry of the~partition function of some square ice models
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 309-317

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the partition function $Z(N;x_1,\dots,x_N,y_1,\dots,y_N)$ of the square ice model with domain wall boundary conditions. We give a simple proof that $Z$ is symmetric with respect to all its variables when the global parameter $a$ of the model is set to the special value $a=e^{i\pi/3}$. Our proof does not use any determinant interpretation of $Z$ and can be adapted to other situations (e.g., to some symmetric ice models).
Keywords: alternating-sign matrix, square ice model, partition function, Yang–Baxter equation.
@article{TMF_2009_161_3_a0,
     author = {J.-Ch. Aval},
     title = {The~symmetry of the~partition function of some square ice models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--317},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/}
}
TY  - JOUR
AU  - J.-Ch. Aval
TI  - The~symmetry of the~partition function of some square ice models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 309
EP  - 317
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/
LA  - ru
ID  - TMF_2009_161_3_a0
ER  - 
%0 Journal Article
%A J.-Ch. Aval
%T The~symmetry of the~partition function of some square ice models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 309-317
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/
%G ru
%F TMF_2009_161_3_a0
J.-Ch. Aval. The~symmetry of the~partition function of some square ice models. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 3, pp. 309-317. http://geodesic.mathdoc.fr/item/TMF_2009_161_3_a0/