Fluid thermodynamics: Qualitative consideration
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 224-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the thermodynamics of fluids (i.e., of a gas–liquid region where gas is indistinguishable from liquid). Using the methods of distribution theory for Diophantine equations, we find an explanation of certain old experiments. We disprove some old postulates and hypotheses, including the mathematical axiom that distributions of independent events are mutually multiplied. In the weakly nonideal case, we propose that the complex germ method should be used to avoid using the previously disproved Kac hypothesis on the conservation of chaos.
Mots-clés : dimer, liquid
Keywords: cluster, parastatistics, condensate, relativistic gas, fluid, thermodynamics, distribution theory, number theory.
@article{TMF_2009_161_2_a7,
     author = {V. P. Maslov},
     title = {Fluid thermodynamics: {Qualitative} consideration},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--242},
     year = {2009},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Fluid thermodynamics: Qualitative consideration
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 224
EP  - 242
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a7/
LA  - ru
ID  - TMF_2009_161_2_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Fluid thermodynamics: Qualitative consideration
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 224-242
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a7/
%G ru
%F TMF_2009_161_2_a7
V. P. Maslov. Fluid thermodynamics: Qualitative consideration. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 224-242. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a7/

[1] R. Feynman, The principle of least action in quantum mechanics, Thesis Ph.D no 12-03, Prinston Univ., 1942

[2] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | MR | Zbl

[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, GIFML, M., 1963 | MR | MR | Zbl

[4] V. P. Maslov, Math. Notes, 85:5–6 (2009), 613–622 | DOI | Zbl

[5] S. G. Gindikin, Rasskazy o fizikakh i matematikakh, MTsNMO, M., 2001 | MR | Zbl

[6] V. P. Maslov, TMF, 159:1 (2009), 174–176 | DOI | MR | Zbl

[7] V. P. Maslov, Threshold levels in Economics, arXiv: 0903.4783

[8] V. P. Maslov, TMF, 157:2 (2008), 250–272 | DOI | MR | Zbl

[9] V. P. Maslov, Russ. J. Math. Phys., 15:4 (2008), 493–510 | DOI | MR | Zbl

[10] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka, Editorial URSS, M., 2000

[11] V. P. Maslov, Math. Notes, 86:2 (2009), 293–297 | DOI | Zbl

[12] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. T. 3. Teoriya ravnovesnykh sistem, Editorial URSS, M., 2003 | MR

[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | MR | Zbl

[14] A. Maradudin, E. Montroll, Dzh. Veiss, Dinamicheskaya teoriya kristallicheskoi reshetki v garmonicheskom priblizhenii, Mir, M., 1965 | MR

[15] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR | Zbl

[16] A. M. Vershik, Funkts. analiz i ego pril., 30:2 (1992), 19–39 | DOI | MR | Zbl

[17] V. P. Maslov, Math. Notes, 86:1 (2009), 3–9 | DOI | MR | Zbl

[18] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1964 | MR | MR | Zbl