Lorentz-invariant quantization of the Yang–Mills theory free of the Gribov ambiguity
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 204-211
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a new formulation of the Yang–Mills theory that allows avoiding the Gribov ambiguity of gauge fixing.
Keywords:
gauge, Gribov ambiguity, unitarity.
@article{TMF_2009_161_2_a5,
author = {A. A. Slavnov},
title = {Lorentz-invariant quantization of {the~Yang{\textendash}Mills} theory free of {the~Gribov} ambiguity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {204--211},
year = {2009},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a5/}
}
A. A. Slavnov. Lorentz-invariant quantization of the Yang–Mills theory free of the Gribov ambiguity. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 204-211. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a5/
[1] V. N. Gribov, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR
[2] I. M. Singer, Comm. Math. Phys., 60 (1978), 7–12 | DOI | MR | Zbl
[3] D. Zwanziger, Nucl. Phys. B, 321:3 (1989), 591–604 | DOI | MR
[4] A. A. Slavnov, JHEP, 08:8 (2008), 047 | DOI | MR
[5] A. A. Slavnov, TMF, 154:2 (2008), 213–219 | DOI | MR | Zbl
[6] T. Kugo, I. Ojima, Progr. Theoret. Phys. Suppl., 66:1 (1979), 1–130 | DOI | MR
[7] M. Henneaux, “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum Mechanics of Fundamental Systems, 1, Proc. Meeting (Santiago, December 16–20, 1985), Ser. Cent. Estud. Cient. Santiago, ed. C. Teitelboim, Plenum, New York, 1988, 117–144 | MR | MR
[8] R. N. Baranov, TMF, 161:1 (2009), 37–45 | DOI | MR | Zbl