Mots-clés : Painlevé equation, Garnier system.
@article{TMF_2009_161_2_a4,
author = {D. P. Novikov},
title = {The~$2{\times}2$ matrix {Schlesinger} system and {the~Belavin{\textendash}Polyakov{\textendash}Zamolodchikov} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {191--203},
year = {2009},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a4/}
}
TY - JOUR
AU - D. P. Novikov
TI - The $2{\times}2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2009
SP - 191
EP - 203
VL - 161
IS - 2
UR - http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a4/
LA - ru
ID - TMF_2009_161_2_a4
ER -
D. P. Novikov. The $2{\times}2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 191-203. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a4/
[1] L. Schlesinger, J. für Math., 141 (1912), 96–145 | Zbl
[2] M. Sato, T. Miwa, M. Jimbo, Publ. Res. Inst. Math. Sci., 15:1 (1979), 201–278 | DOI | MR | Zbl
[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Beskonechnaya konformnaya simmetriya v dvumernoi kvantovoi teorii polya”, Instantony, struny i konformnaya teoriya polya, Nucl. Phys. B, ed. A. A. Belavin, Fizmatlit, M., 2002, 224–271 | DOI | MR | Zbl
[4] A. B. Zamolodchikov, V. A. Fateev, YaF, 43:4 (1986), 1031–1044
[5] N. Reshetikhin, Lett. Math. Phys., 26:3 (1992), 167–177 ; N. Reshetikhin, A. Varchenko, “Quasiclassical Asymptotics of Solutions of the KZ Equations”, Geometry, Topology, and Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, ed. S.-T. Yau, Int. Press, Cambridge, MA, 1995, 293–322 ; arXiv: hep-th/9402126 | DOI | MR | Zbl | MR | Zbl
[6] J. Harnad, “Quantum isomonodromic deformations and the Knizhnik–Zamolodchikov equations”, Symmetries and Integrability of Difference Equations (Esterel, PQ, 1994), CRM Proc. Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, 1996, 155–161 ; arXiv: hep-th/9406078 | DOI | MR | Zbl
[7] D. Korotkin, H. Samtleben, Comm. Math. Phys., 190:2 (1997), 411–457 ; arXiv: hep-th/9607095 | DOI | MR | Zbl
[8] V. G. Knizhnik, A. B. Zamolodchikov, Nucl. Phys. B, 247:1 (1984), 83–103 ; “Алгебра токов и двумерная модель Весса–Зумино”, Инстантоны, струны и конформная теория поля, ред. А. А. Белавин, Физматлит, М., 2002, 311–331 | DOI | MR | Zbl | MR
[9] E. K. Sklyanin, “Razdelenie peremennykh v sisteme Godena”, Differentsialnaya geometriya, gruppy Li i mekhanika. IX, Zap. nauchn. sem. LOMI, 164, ed. L. D. Faddeev, Nauka, L., 1987, 151–169 | MR | Zbl
[10] A. Stoyanovsky, A relation between the Knizhnik–Zamolodchikov and Belavin–Polyakov–Zamolodchikov systems of partial differential equations, arXiv: math-ph/0012013v2 | MR
[11] B. I. Suleimanov, “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, ed. A. M. Ilin, In-t matematiki, Ufa, 1988, 93–102 ; Дифференц. уравнения, 30:5 (1994), 791–795 | MR | Zbl | MR | Zbl
[12] S. P. Balandin, B. I. Suleimanov, Differents. uravneniya, 30:12 (1994), 2175–2176 | MR | Zbl
[13] B. I. Suleimanov, TMF, 156:3 (2008), 364–377 | DOI | MR | Zbl
[14] R. Fuchs, C. R. Acad. Sci. Paris, 141 (1905), 555–558 | MR | Zbl
[15] D. P. Novikov, TMF, 146:3 (2006), 355–364 | DOI | MR | Zbl
[16] A. V. Kitaev, D. A. Korotkin, Internat. Math. Res. Notices, 1998:17 (1998), 877–905 ; arXiv: math-ph/9810007 | DOI | MR | Zbl
[17] A. Ya. Kazakov, S. Yu. Slavyanov, TMF, 155:2 (2008), 252–264 | DOI | MR | Zbl
[18] A. V. Kitaev, Algebra i analiz, 17:1 (2005), 224–275 ; arXiv: nlin.SI/0309078 | DOI | MR | Zbl
[19] B. Riman, “Teoriya abelevykh funktsii I”, Sochineniya, ed. V. L. Goncharov, OGIZ, M., 1948, 88–138 ; “Об обращении в нуль $\theta$-функций III”, 139–150 | Zbl | Zbl
[20] A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903 | MR | Zbl
[21] H. F. Baker, Abel's Theorem and the Allied Theory Including the Theory of the Theta Functions, Univ. Press, Cambridge, 1897 | MR | Zbl
[22] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR | MR
[23] P. Deift, A. Its, A. Kapaev, X. Zhou, A note on the algebro-geometric integration of the Schlesinger equations and on the elliptic solutions of the Painlevé VI equation, Preprint PDMI 20/1997
[24] R. Garnier, Ann. Sci. École Norm. Sup.(3), 29 (1912), 1–126 | DOI | MR | Zbl
[25] B. Dubrovin, M. Mazzocco, Comm. Math. Phys., 271:2 (2007), 289–373 ; arXiv: math.DG/0311261 | DOI | MR | Zbl
[26] Al. B. Zamolodchikov, ZhETF, 90:5 (1986), 1808–1818 | MR
[27] Al. B. Zamolodchikov, Nucl. Phys. B, 285:3 (1987), 481–503 | DOI | MR
[28] A. B. Zamolodchikov, Al. B. Zamolodchikov, Konformnaya teoriya polya i kriticheskie yavleniya v dvumernykh sistemakh, ITEF, TsNIIatominform, M., 1989–1990
[29] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl
[30] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1967 | MR | MR | Zbl
[31] Yu. V. Brezhnev, On functions of Jacobi–Weierstrass (I) and equation of Painleve, arXiv: 0808.3486
[32] B. A. Dubrovin, UMN, 36:2(218) (1981), 11–80 | DOI | MR | Zbl
[33] N. H. Abel, {ØE}uvres complètes. T. I, Complete Works. Vol. I, eds. L. Sylow and S. Lie, Editions Jacques Gabay, Sceaux, 1992, 40–60 ; {ØE}uvres complètes. T. II, 145–211 | MR | Zbl
[34] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Ch. 2, Fizmatlit, M., 1963 | MR | Zbl
[35] V. Lai, A. Ya. Kazakov, S. Yu. Slavyanov, Algebra i analiz, 8:2 (1996), 129–141 ; С. Славянов, В. Лай, Специальные функции: единая теория, основанная на анализе особенностей, Невский Диалект, С-Пб., 2002 | MR | Zbl | MR | Zbl