Vector hyperbolic equations with higher symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 176-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We list eleven vector hyperbolic equations that have third-order symmetries with respect to both characteristics. This list exhausts the equations with at least one symmetry of a divergence form. We integrate four equations in the list explicitly, bring one to a linear form, and bring four more to nonlinear ordinary nonautonomous systems. We find the Bäcklund transformations for six equations.
Keywords: hyperbolic equation, higher symmetry, integral, Bäcklund transformation, exact integrability.
@article{TMF_2009_161_2_a3,
     author = {A. G. Meshkov},
     title = {Vector hyperbolic equations with higher symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {176--190},
     year = {2009},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a3/}
}
TY  - JOUR
AU  - A. G. Meshkov
TI  - Vector hyperbolic equations with higher symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 176
EP  - 190
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a3/
LA  - ru
ID  - TMF_2009_161_2_a3
ER  - 
%0 Journal Article
%A A. G. Meshkov
%T Vector hyperbolic equations with higher symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 176-190
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a3/
%G ru
%F TMF_2009_161_2_a3
A. G. Meshkov. Vector hyperbolic equations with higher symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 176-190. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a3/

[1] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | MR | Zbl

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[3] A. S. Fokas, Stud. Appl. Math., 77:3 (1987), 253–299 | DOI | MR | Zbl

[4] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl

[5] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Bakhtaryar, V. E. Zakharov, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 ; A. V. Mikhajlov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to the classification of integrable equations”, What is Integrability, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 115–184 | MR | Zbl | DOI | MR

[6] S. C. Anco, T. Wolf, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 13–31 | DOI | MR

[7] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[8] A. G. Meshkov, V. V. Sokolov, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl

[9] A. G. Meshkov, V. V. Sokolov, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[10] R. M. Miura (ed.), Bäcklund Transformations, the Inverse Scattering Method, Solitons, and their Applications. NSF Research Workshop on Contact Transformations, Workshop on Contact Trans. (Vanderbilt Univ. Nashville, Tenn., September 27–29, 1974), Lecture Notes in Math., 515, Springer, Berlin, 1976 | DOI | MR | Zbl

[11] A. G. Meshkov, Fundament. i prikl. matem., 12:7 (2006), 141–161 | DOI | MR

[12] M. Yu. Balakhnev, TMF, 154:2 (2008), 261–267 | DOI | MR | Zbl

[13] Dzh. L. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR | MR | Zbl

[14] M. Yu. Balakhnev, Matem. zametki, 82:4 (2007), 501–503 | DOI | MR | Zbl