@article{TMF_2009_161_2_a1,
author = {A. V. Razumov and Yu. G. Stroganov},
title = {Three-coloring statistical model with domain wall boundary conditions: {Trigonometric} limit},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {154--163},
year = {2009},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/}
}
TY - JOUR AU - A. V. Razumov AU - Yu. G. Stroganov TI - Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 154 EP - 163 VL - 161 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/ LA - ru ID - TMF_2009_161_2_a1 ER -
%0 Journal Article %A A. V. Razumov %A Yu. G. Stroganov %T Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 154-163 %V 161 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/ %G ru %F TMF_2009_161_2_a1
A. V. Razumov; Yu. G. Stroganov. Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 154-163. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/
[1] A. V. Razumov, Yu. G. Stroganov, TMF, 161:1 (2009), 3–20 ; arXiv: 0805.0669 | DOI | MR | Zbl
[2] R. J. Baxter, J. Math. Phys., 11:10 (1970), 3116–3124 | DOI | MR | Zbl
[3] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[4] Yu. G. Stroganov, Obschie svoistva i chastnye resheniya uravneniya treugolnika. Vychislenie statisticheskoi summy dlya nekotorykh modelei na ploskoi reshetke, Dis. $\dots$ kand. fiz.-mat. nauk, IVFE, Protvino, 1982
[5] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Gostekhizdat, L.-M., 1933–1934 | MR | Zbl
[6] Yu. G. Stroganov, TMF, 146:1 (2006), 65–76 ; arXiv: math-ph/0204042 | DOI | MR | Zbl
[7] A. V. Razumov, Yu. G. Stroganov, TMF, 141:3 (2004), 323–347 ; arXiv: math-ph/0312071 | DOI | MR | Zbl
[8] A. V. Razumov, Yu. G. Stroganov, TMF, 148:3 (2006), 357–386 ; arXiv: math-ph/0504022 | DOI | MR | Zbl
[9] A. V. Razumov, Yu. G. Stroganov, TMF, 149:3 (2006), 395–408 ; arXiv: math-ph/0507003 | DOI | MR | Zbl
[10] R. J. Baxter, Ann. Phys., 76:1 (1973), 25–47 | DOI | Zbl
[11] H. Rosengren, Adv. Appl. Math., 43:2 (2009), 137–155 ; arXiv: 0801.1229 | DOI | MR | Zbl
[12] S. Okada, J. Algebra, 205:2 (1998), 337–367 | DOI | MR | Zbl
[13] S. Okada, J. Algebraic Combin., 23:1 (2006), 43–69 ; arXiv: math/0408234 | DOI | MR | Zbl
[14] A. Lenard, J. Math. Phys., 2:5 (1961), 682–693 | DOI | MR | Zbl
[15] Yu. G. Stroganov, Izergin–Korepin determinant reloaded, arXiv: math-ph/0409072