Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 154-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nontrivial trigonometric limit of the three-coloring statistical model with the domain wall boundary conditions. In this limit, we solve the previously constructed functional equations and find a new determinant representation for the partial partition functions.
Keywords: three-coloring model, partition function, trigonometric limit.
@article{TMF_2009_161_2_a1,
     author = {A. V. Razumov and Yu. G. Stroganov},
     title = {Three-coloring statistical model with domain wall boundary conditions: {Trigonometric} limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {154--163},
     year = {2009},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - Yu. G. Stroganov
TI  - Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 154
EP  - 163
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/
LA  - ru
ID  - TMF_2009_161_2_a1
ER  - 
%0 Journal Article
%A A. V. Razumov
%A Yu. G. Stroganov
%T Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 154-163
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/
%G ru
%F TMF_2009_161_2_a1
A. V. Razumov; Yu. G. Stroganov. Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 2, pp. 154-163. http://geodesic.mathdoc.fr/item/TMF_2009_161_2_a1/

[1] A. V. Razumov, Yu. G. Stroganov, TMF, 161:1 (2009), 3–20 ; arXiv: 0805.0669 | DOI | MR | Zbl

[2] R. J. Baxter, J. Math. Phys., 11:10 (1970), 3116–3124 | DOI | MR | Zbl

[3] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[4] Yu. G. Stroganov, Obschie svoistva i chastnye resheniya uravneniya treugolnika. Vychislenie statisticheskoi summy dlya nekotorykh modelei na ploskoi reshetke, Dis. $\dots$ kand. fiz.-mat. nauk, IVFE, Protvino, 1982

[5] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Gostekhizdat, L.-M., 1933–1934 | MR | Zbl

[6] Yu. G. Stroganov, TMF, 146:1 (2006), 65–76 ; arXiv: math-ph/0204042 | DOI | MR | Zbl

[7] A. V. Razumov, Yu. G. Stroganov, TMF, 141:3 (2004), 323–347 ; arXiv: math-ph/0312071 | DOI | MR | Zbl

[8] A. V. Razumov, Yu. G. Stroganov, TMF, 148:3 (2006), 357–386 ; arXiv: math-ph/0504022 | DOI | MR | Zbl

[9] A. V. Razumov, Yu. G. Stroganov, TMF, 149:3 (2006), 395–408 ; arXiv: math-ph/0507003 | DOI | MR | Zbl

[10] R. J. Baxter, Ann. Phys., 76:1 (1973), 25–47 | DOI | Zbl

[11] H. Rosengren, Adv. Appl. Math., 43:2 (2009), 137–155 ; arXiv: 0801.1229 | DOI | MR | Zbl

[12] S. Okada, J. Algebra, 205:2 (1998), 337–367 | DOI | MR | Zbl

[13] S. Okada, J. Algebraic Combin., 23:1 (2006), 43–69 ; arXiv: math/0408234 | DOI | MR | Zbl

[14] A. Lenard, J. Math. Phys., 2:5 (1961), 682–693 | DOI | MR | Zbl

[15] Yu. G. Stroganov, Izergin–Korepin determinant reloaded, arXiv: math-ph/0409072