One-loop counterterms in the Yang–Mills theory with a gauge-invariant ghost field Lagrangian
Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 37-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the one-loop renormalization constants $Z_1$ and $Z_2$ in the model with a gauge-invariant ghost field Lagrangian. We show that the model is asymptotically free and that the renormalization constants satisfy the same equation as in the ordinary Yang–Mills theory.
Keywords: gauge invariance, Yang–Mills theory, perturbation theory, one-loop counterterm.
@article{TMF_2009_161_1_a2,
     author = {R. N. Baranov},
     title = {One-loop counterterms in {the~Yang{\textendash}Mills} theory with a~gauge-invariant ghost field {Lagrangian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--45},
     year = {2009},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a2/}
}
TY  - JOUR
AU  - R. N. Baranov
TI  - One-loop counterterms in the Yang–Mills theory with a gauge-invariant ghost field Lagrangian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 37
EP  - 45
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a2/
LA  - ru
ID  - TMF_2009_161_1_a2
ER  - 
%0 Journal Article
%A R. N. Baranov
%T One-loop counterterms in the Yang–Mills theory with a gauge-invariant ghost field Lagrangian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 37-45
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a2/
%G ru
%F TMF_2009_161_1_a2
R. N. Baranov. One-loop counterterms in the Yang–Mills theory with a gauge-invariant ghost field Lagrangian. Teoretičeskaâ i matematičeskaâ fizika, Tome 161 (2009) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/TMF_2009_161_1_a2/

[1] A. A. Slavnov, JHEP, 08 (2008), 047 | DOI | MR

[2] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | MR | Zbl

[3] M. Peskin, D. Shreder, Vvedenie v kvantovuyu teoriyu polya, RKhD, Izhevsk, 2001 | MR